Higher order connections and fields of geometric
Trudy Geometricheskogo Seminara, Trudy Geometricheskogo Seminara, Tome 24 (2003), pp. 31-42
Voir la notice de l'article provenant de la source Math-Net.Ru
In the present paper we study manifolds depending on $N$ parameters, i.e. fibered manifolds $p\colon E\to U$, where $U\subset\mathbf R^N$ is an open subset in $\mathbf R^N$. To the Weil bundle $\widehat T^{\mathbf A}(E)$ we associate a sequence of principal $\mathbf A$-affine frame bundles of higher order, this makes it possible to consider fields of (vertical) differential geometric objects on $E$ as sections of the corresponding associated bundles. In particular, we construct the bundle of $\mathbf A$-affine connections on $E$. We construct also complete lifts of geometric objects from E to the Weil bundle $\widehat T^{\mathbf B}(E)$, where $\mathbf B$ is the Weil algebra of width $N$.
@article{KUTGS_2003_24_a4,
author = {G. N. Bushueva},
title = {Higher order connections and fields of geometric},
journal = {Trudy Geometricheskogo Seminara},
pages = {31--42},
publisher = {mathdoc},
volume = {24},
year = {2003},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/KUTGS_2003_24_a4/}
}
G. N. Bushueva. Higher order connections and fields of geometric. Trudy Geometricheskogo Seminara, Trudy Geometricheskogo Seminara, Tome 24 (2003), pp. 31-42. http://geodesic.mathdoc.fr/item/KUTGS_2003_24_a4/