On holonomy representations of manifolds modelled on modules over Weil algebra
Trudy Geometricheskogo Seminara, Trudy Geometricheskogo Seminara, Tome 24 (2003), pp. 129-138

Voir la notice de l'article provenant de la source Math-Net.Ru

In [5], [6], for the canonical foliations of manifolds over local algebra $\mathbf A$ determined by ideals of $\mathbf A$, V. V. Shurygin defined and studied holonomy leaf representations. In the present paper we define holonomy representations for manifolds modelled on an $\mathbf A$-module $\mathbf L=\mathbf A^n\oplus\mathbf B^m$, where $\mathbf B$ is a quotient algebra of $\mathbf A$, and find interrelation of these representations with the holonomy representations defined in the foliation theory [3], [4] and in the theory of $(X,G)$-manifolds [1].
@article{KUTGS_2003_24_a12,
     author = {L. {\CYRV}. Smolyakova},
     title = {On holonomy representations of manifolds modelled on modules over {Weil} algebra},
     journal = {Trudy Geometricheskogo Seminara},
     pages = {129--138},
     publisher = {mathdoc},
     volume = {24},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/KUTGS_2003_24_a12/}
}
TY  - JOUR
AU  - L. В. Smolyakova
TI  - On holonomy representations of manifolds modelled on modules over Weil algebra
JO  - Trudy Geometricheskogo Seminara
PY  - 2003
SP  - 129
EP  - 138
VL  - 24
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KUTGS_2003_24_a12/
LA  - ru
ID  - KUTGS_2003_24_a12
ER  - 
%0 Journal Article
%A L. В. Smolyakova
%T On holonomy representations of manifolds modelled on modules over Weil algebra
%J Trudy Geometricheskogo Seminara
%D 2003
%P 129-138
%V 24
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KUTGS_2003_24_a12/
%G ru
%F KUTGS_2003_24_a12
L. В. Smolyakova. On holonomy representations of manifolds modelled on modules over Weil algebra. Trudy Geometricheskogo Seminara, Trudy Geometricheskogo Seminara, Tome 24 (2003), pp. 129-138. http://geodesic.mathdoc.fr/item/KUTGS_2003_24_a12/