On holonomy representations of manifolds modelled on modules over Weil algebra
    
    
  
  
  
      
      
      
        
Trudy Geometricheskogo Seminara, Trudy Geometricheskogo Seminara, Tome 24 (2003), pp. 129-138
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In [5], [6], for the canonical foliations of manifolds over local algebra $\mathbf A$ determined by ideals of $\mathbf A$, V. V. Shurygin defined and studied holonomy leaf representations. In the present paper we define holonomy representations for manifolds modelled on an $\mathbf A$-module $\mathbf L=\mathbf A^n\oplus\mathbf B^m$, where $\mathbf B$ is a quotient algebra of $\mathbf A$, and find interrelation of these representations with the holonomy representations defined in the foliation theory [3], [4] and in the theory of $(X,G)$-manifolds [1].
			
            
            
            
          
        
      @article{KUTGS_2003_24_a12,
     author = {L. {\CYRV}. Smolyakova},
     title = {On holonomy representations of manifolds modelled on modules over {Weil} algebra},
     journal = {Trudy Geometricheskogo Seminara},
     pages = {129--138},
     publisher = {mathdoc},
     volume = {24},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/KUTGS_2003_24_a12/}
}
                      
                      
                    L. В. Smolyakova. On holonomy representations of manifolds modelled on modules over Weil algebra. Trudy Geometricheskogo Seminara, Trudy Geometricheskogo Seminara, Tome 24 (2003), pp. 129-138. http://geodesic.mathdoc.fr/item/KUTGS_2003_24_a12/