Invariant characteristics of some classes of almost Hermitian structures
Trudy Geometricheskogo Seminara, Trudy Geometricheskogo Seminara, Tome 23 (1997), pp. 77-83 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

On the tangent bundle $TM$ of a smooth manifold $M$ with a nonlinear connection $\nabla$ and a generalized Lagrangian metric $g$ we consider a Riemannian metric $\tilde g$ such that $$ \tilde g(X^h,Y^h)=\tilde g(X^v,Y^v)=g(X,Y), \qquad \tilde g(X^h,Y^v)=0, $$ where $X^h,Y^h$ and $X^v,Y^v$ are, respectively, the horizontal and vertical lifts of vector fields $X$ and $Y$ on $M$. The metric $\tilde g$ is Hermitian with respect to the almost complex structure $J$: $JX^h=X^v$, $JX^v=-X^h$. We find invariant characteristics of certain classes of almost Hermitian structures $(TM,\tilde g,J)$, e.g. Kahlerian structures, almost Kahlerian structures, semi-Kahlerian structures.
@article{KUTGS_1997_23_a7,
     author = {V. I. Panzhenskij},
     title = {Invariant characteristics of some classes of almost {Hermitian} structures},
     journal = {Trudy Geometricheskogo Seminara},
     pages = {77--83},
     year = {1997},
     volume = {23},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/KUTGS_1997_23_a7/}
}
TY  - JOUR
AU  - V. I. Panzhenskij
TI  - Invariant characteristics of some classes of almost Hermitian structures
JO  - Trudy Geometricheskogo Seminara
PY  - 1997
SP  - 77
EP  - 83
VL  - 23
UR  - http://geodesic.mathdoc.fr/item/KUTGS_1997_23_a7/
LA  - ru
ID  - KUTGS_1997_23_a7
ER  - 
%0 Journal Article
%A V. I. Panzhenskij
%T Invariant characteristics of some classes of almost Hermitian structures
%J Trudy Geometricheskogo Seminara
%D 1997
%P 77-83
%V 23
%U http://geodesic.mathdoc.fr/item/KUTGS_1997_23_a7/
%G ru
%F KUTGS_1997_23_a7
V. I. Panzhenskij. Invariant characteristics of some classes of almost Hermitian structures. Trudy Geometricheskogo Seminara, Trudy Geometricheskogo Seminara, Tome 23 (1997), pp. 77-83. http://geodesic.mathdoc.fr/item/KUTGS_1997_23_a7/