Invariant characteristics of some classes of almost Hermitian structures
Trudy Geometricheskogo Seminara, Trudy Geometricheskogo Seminara, Tome 23 (1997), pp. 77-83
Cet article a éte moissonné depuis la source Math-Net.Ru
On the tangent bundle $TM$ of a smooth manifold $M$ with a nonlinear connection $\nabla$ and a generalized Lagrangian metric $g$ we consider a Riemannian metric $\tilde g$ such that $$ \tilde g(X^h,Y^h)=\tilde g(X^v,Y^v)=g(X,Y), \qquad \tilde g(X^h,Y^v)=0, $$ where $X^h,Y^h$ and $X^v,Y^v$ are, respectively, the horizontal and vertical lifts of vector fields $X$ and $Y$ on $M$. The metric $\tilde g$ is Hermitian with respect to the almost complex structure $J$: $JX^h=X^v$, $JX^v=-X^h$. We find invariant characteristics of certain classes of almost Hermitian structures $(TM,\tilde g,J)$, e.g. Kahlerian structures, almost Kahlerian structures, semi-Kahlerian structures.
@article{KUTGS_1997_23_a7,
author = {V. I. Panzhenskij},
title = {Invariant characteristics of some classes of almost {Hermitian} structures},
journal = {Trudy Geometricheskogo Seminara},
pages = {77--83},
year = {1997},
volume = {23},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/KUTGS_1997_23_a7/}
}
V. I. Panzhenskij. Invariant characteristics of some classes of almost Hermitian structures. Trudy Geometricheskogo Seminara, Trudy Geometricheskogo Seminara, Tome 23 (1997), pp. 77-83. http://geodesic.mathdoc.fr/item/KUTGS_1997_23_a7/