Godbillion–Vey classes for a one-dimensional manifold over a local algebra
Trudy Geometricheskogo Seminara, Trudy Geometricheskogo Seminara, Tome 23 (1997), pp. 65-76
Cet article a éte moissonné depuis la source Math-Net.Ru
On a one-dimensional manifold $M$ over local algebra $\mathbb A$ whose canonical foliation is orientable, there exists an $\mathbb A$-valued basis 1-form $\omega$, which satisfies the equation $d\omega=\theta\land\omega$. A real-valued 1-form $\omega$ on a smooth manifold subordinate to the same equation determines a foliation of codimension 1. This makes it possible to define a Godbillon class and a Vey class of $M$ in the same manner as in the foliation theory [9]. In the present paper we find triviality conditions for the Godbillon class and the Vey class of a one-dimensional manifold over $\mathbb A$.
@article{KUTGS_1997_23_a6,
author = {M. A. Malakhaltsev},
title = {Godbillion{\textendash}Vey classes for a one-dimensional manifold over a~local algebra},
journal = {Trudy Geometricheskogo Seminara},
pages = {65--76},
year = {1997},
volume = {23},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/KUTGS_1997_23_a6/}
}
M. A. Malakhaltsev. Godbillion–Vey classes for a one-dimensional manifold over a local algebra. Trudy Geometricheskogo Seminara, Trudy Geometricheskogo Seminara, Tome 23 (1997), pp. 65-76. http://geodesic.mathdoc.fr/item/KUTGS_1997_23_a6/