Godbillion–Vey classes for a one-dimensional manifold over a local algebra
Trudy Geometricheskogo Seminara, Trudy Geometricheskogo Seminara, Tome 23 (1997), pp. 65-76 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

On a one-dimensional manifold $M$ over local algebra $\mathbb A$ whose canonical foliation is orientable, there exists an $\mathbb A$-valued basis 1-form $\omega$, which satisfies the equation $d\omega=\theta\land\omega$. A real-valued 1-form $\omega$ on a smooth manifold subordinate to the same equation determines a foliation of codimension 1. This makes it possible to define a Godbillon class and a Vey class of $M$ in the same manner as in the foliation theory [9]. In the present paper we find triviality conditions for the Godbillon class and the Vey class of a one-dimensional manifold over $\mathbb A$.
@article{KUTGS_1997_23_a6,
     author = {M. A. Malakhaltsev},
     title = {Godbillion{\textendash}Vey classes for a one-dimensional manifold over a~local algebra},
     journal = {Trudy Geometricheskogo Seminara},
     pages = {65--76},
     year = {1997},
     volume = {23},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/KUTGS_1997_23_a6/}
}
TY  - JOUR
AU  - M. A. Malakhaltsev
TI  - Godbillion–Vey classes for a one-dimensional manifold over a local algebra
JO  - Trudy Geometricheskogo Seminara
PY  - 1997
SP  - 65
EP  - 76
VL  - 23
UR  - http://geodesic.mathdoc.fr/item/KUTGS_1997_23_a6/
LA  - ru
ID  - KUTGS_1997_23_a6
ER  - 
%0 Journal Article
%A M. A. Malakhaltsev
%T Godbillion–Vey classes for a one-dimensional manifold over a local algebra
%J Trudy Geometricheskogo Seminara
%D 1997
%P 65-76
%V 23
%U http://geodesic.mathdoc.fr/item/KUTGS_1997_23_a6/
%G ru
%F KUTGS_1997_23_a6
M. A. Malakhaltsev. Godbillion–Vey classes for a one-dimensional manifold over a local algebra. Trudy Geometricheskogo Seminara, Trudy Geometricheskogo Seminara, Tome 23 (1997), pp. 65-76. http://geodesic.mathdoc.fr/item/KUTGS_1997_23_a6/