On $K$-contact metric structures
Trudy Geometricheskogo Seminara, Trudy Geometricheskogo Seminara, Tome 23 (1997), pp. 43-55
Cet article a éte moissonné depuis la source Math-Net.Ru
We obtain a complete system of structure equations of $K$-contact manifolds and study connections between various characteristics of isotropy of $K$-contact manifolds: the constancy of $\Phi$-sectional curvature, the axiom of $\Phi$-holomorphic planes, etc. We prove that a $K$-contact manifold is locally symmetric if and only if this manifold is conformally flat, and obtain a complete classification of such manifolds.
@article{KUTGS_1997_23_a4,
author = {N. V. Ermak},
title = {On $K$-contact metric structures},
journal = {Trudy Geometricheskogo Seminara},
pages = {43--55},
year = {1997},
volume = {23},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/KUTGS_1997_23_a4/}
}
N. V. Ermak. On $K$-contact metric structures. Trudy Geometricheskogo Seminara, Trudy Geometricheskogo Seminara, Tome 23 (1997), pp. 43-55. http://geodesic.mathdoc.fr/item/KUTGS_1997_23_a4/