On $K$-contact metric structures
Trudy Geometricheskogo Seminara, Trudy Geometricheskogo Seminara, Tome 23 (1997), pp. 43-55

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a complete system of structure equations of $K$-contact manifolds and study connections between various characteristics of isotropy of $K$-contact manifolds: the constancy of $\Phi$-sectional curvature, the axiom of $\Phi$-holomorphic planes, etc. We prove that a $K$-contact manifold is locally symmetric if and only if this manifold is conformally flat, and obtain a complete classification of such manifolds.
@article{KUTGS_1997_23_a4,
     author = {N. V. Ermak},
     title = {On $K$-contact metric structures},
     journal = {Trudy Geometricheskogo Seminara},
     pages = {43--55},
     publisher = {mathdoc},
     volume = {23},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/KUTGS_1997_23_a4/}
}
TY  - JOUR
AU  - N. V. Ermak
TI  - On $K$-contact metric structures
JO  - Trudy Geometricheskogo Seminara
PY  - 1997
SP  - 43
EP  - 55
VL  - 23
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KUTGS_1997_23_a4/
LA  - ru
ID  - KUTGS_1997_23_a4
ER  - 
%0 Journal Article
%A N. V. Ermak
%T On $K$-contact metric structures
%J Trudy Geometricheskogo Seminara
%D 1997
%P 43-55
%V 23
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KUTGS_1997_23_a4/
%G ru
%F KUTGS_1997_23_a4
N. V. Ermak. On $K$-contact metric structures. Trudy Geometricheskogo Seminara, Trudy Geometricheskogo Seminara, Tome 23 (1997), pp. 43-55. http://geodesic.mathdoc.fr/item/KUTGS_1997_23_a4/