Special $\mathcal L_n$ that admit nontrivial~$J_0$
Trudy Geometricheskogo Seminara, Trudy Geometricheskogo Seminara, Tome 23 (1997), pp. 223-230

Voir la notice de l'article provenant de la source Math-Net.Ru

We suggest a method that allows to prove existence of a nontrivial homogeneous linear integral of geodesies in affinely connected spaces. We find connection coefficients of these spaces relative to a special coordinate system.
@article{KUTGS_1997_23_a19,
     author = {Sh. A. Yafarov},
     title = {Special $\mathcal L_n$ that admit nontrivial~$J_0$},
     journal = {Trudy Geometricheskogo Seminara},
     pages = {223--230},
     publisher = {mathdoc},
     volume = {23},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/KUTGS_1997_23_a19/}
}
TY  - JOUR
AU  - Sh. A. Yafarov
TI  - Special $\mathcal L_n$ that admit nontrivial~$J_0$
JO  - Trudy Geometricheskogo Seminara
PY  - 1997
SP  - 223
EP  - 230
VL  - 23
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KUTGS_1997_23_a19/
LA  - ru
ID  - KUTGS_1997_23_a19
ER  - 
%0 Journal Article
%A Sh. A. Yafarov
%T Special $\mathcal L_n$ that admit nontrivial~$J_0$
%J Trudy Geometricheskogo Seminara
%D 1997
%P 223-230
%V 23
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KUTGS_1997_23_a19/
%G ru
%F KUTGS_1997_23_a19
Sh. A. Yafarov. Special $\mathcal L_n$ that admit nontrivial~$J_0$. Trudy Geometricheskogo Seminara, Trudy Geometricheskogo Seminara, Tome 23 (1997), pp. 223-230. http://geodesic.mathdoc.fr/item/KUTGS_1997_23_a19/