An interrelation between geometries of a third-order tangent bundle and the Whitney sum
Trudy Geometricheskogo Seminara, Trudy Geometricheskogo Seminara, Tome 23 (1997), pp. 211-221
Voir la notice de l'article provenant de la source Math-Net.Ru
An affine connection on an $n$-dimensional differentiable manifold $M_n$ gives rise to a diffeomorhism $\sigma$ of the third order tangent bundle $T^3M_n$ into the Whitney sum $TM_n\oplus TM_n\oplus TM_n$. This diffeomorphism carries differential geometric objects from $T^3M_n$ to $TM_n\oplus TM_n\oplus TM_n$. For an arbitrary base $M$ we find the tensor of affine deformation between complete lifts of connections into $T^3M_n$ and into $TM_n\oplus TM_n\oplus TM_n$. In case the connection on the base is torsion-free we demonstrate that this tensor can be expressed in terms of the curvature tensor of the connection given on the base and covariant derivatives of this tensor. Moreover, $\sigma$ carries the connection of complete lift on $T^3M_n$ into the connection of complete lift in $TM_n\oplus TM_n\oplus TM_n$ if and only if the base is flat.
@article{KUTGS_1997_23_a18,
author = {E. P. Shustova},
title = {An interrelation between geometries of a third-order tangent bundle and the {Whitney} sum},
journal = {Trudy Geometricheskogo Seminara},
pages = {211--221},
publisher = {mathdoc},
volume = {23},
year = {1997},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/KUTGS_1997_23_a18/}
}
TY - JOUR AU - E. P. Shustova TI - An interrelation between geometries of a third-order tangent bundle and the Whitney sum JO - Trudy Geometricheskogo Seminara PY - 1997 SP - 211 EP - 221 VL - 23 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/KUTGS_1997_23_a18/ LA - ru ID - KUTGS_1997_23_a18 ER -
E. P. Shustova. An interrelation between geometries of a third-order tangent bundle and the Whitney sum. Trudy Geometricheskogo Seminara, Trudy Geometricheskogo Seminara, Tome 23 (1997), pp. 211-221. http://geodesic.mathdoc.fr/item/KUTGS_1997_23_a18/