The space $H_4$ and quaternion algebra
Trudy Geometricheskogo Seminara, Trudy Geometricheskogo Seminara, Tome 23 (1997), pp. 187-198

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a conformal model of the four-dimensional Lobachevskii space $H_4$ by an autopolar framing of a quadric in the projective space $P_5$. We use quaternions to describe points and vectors, this allows us to write the parallel translation law in terms of quaternions. In these terms we also represent infinitesimal motions and infinitesimal conformal transformations, and some finite transformations of $H_4$ as well.
@article{KUTGS_1997_23_a16,
     author = {A. P. Shirokov},
     title = {The space $H_4$ and quaternion algebra},
     journal = {Trudy Geometricheskogo Seminara},
     pages = {187--198},
     publisher = {mathdoc},
     volume = {23},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/KUTGS_1997_23_a16/}
}
TY  - JOUR
AU  - A. P. Shirokov
TI  - The space $H_4$ and quaternion algebra
JO  - Trudy Geometricheskogo Seminara
PY  - 1997
SP  - 187
EP  - 198
VL  - 23
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KUTGS_1997_23_a16/
LA  - ru
ID  - KUTGS_1997_23_a16
ER  - 
%0 Journal Article
%A A. P. Shirokov
%T The space $H_4$ and quaternion algebra
%J Trudy Geometricheskogo Seminara
%D 1997
%P 187-198
%V 23
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KUTGS_1997_23_a16/
%G ru
%F KUTGS_1997_23_a16
A. P. Shirokov. The space $H_4$ and quaternion algebra. Trudy Geometricheskogo Seminara, Trudy Geometricheskogo Seminara, Tome 23 (1997), pp. 187-198. http://geodesic.mathdoc.fr/item/KUTGS_1997_23_a16/