Decomposition of a jet bundle of differentiable mappings into a Whitney sum of tangent bundles
Trudy Geometricheskogo Seminara, Trudy Geometricheskogo Seminara, Tome 23 (1997), pp. 139-148
Voir la notice du chapitre de livre
We prove that the bundle $J_m^rM_n$ of jets of differential mappings of open neighbourhoods of $0\in\mathbb R^m$ into differential manifold $M_n$ can be decomposed into the Whitnev sum $\bigoplus\limits_{a=1}^NT_a(M_n)$, where $N=\binom{m+r}r-1$. To get such a decomposition $J_m^rM_n$ it is sufficient to take a linear connection on $M$. We use this decomposition to construct lifts of linear forms, vector fields and Riemannian metrics from the base $M_n$ into the bundle $J_m^rM_n$.
@article{KUTGS_1997_23_a12,
author = {A. Ya. Sultanov},
title = {Decomposition of a~jet bundle of differentiable mappings into {a~Whitney} sum of tangent bundles},
journal = {Trudy Geometricheskogo Seminara},
pages = {139--148},
year = {1997},
volume = {23},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/KUTGS_1997_23_a12/}
}
A. Ya. Sultanov. Decomposition of a jet bundle of differentiable mappings into a Whitney sum of tangent bundles. Trudy Geometricheskogo Seminara, Trudy Geometricheskogo Seminara, Tome 23 (1997), pp. 139-148. http://geodesic.mathdoc.fr/item/KUTGS_1997_23_a12/