Decomposition of a~jet bundle of differentiable mappings into a~Whitney sum of tangent bundles
Trudy Geometricheskogo Seminara, Trudy Geometricheskogo Seminara, Tome 23 (1997), pp. 139-148
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that the bundle $J_m^rM_n$ of jets of differential mappings of open neighbourhoods of $0\in\mathbb R^m$ into differential manifold $M_n$ can be decomposed into the Whitnev sum $\bigoplus\limits_{a=1}^NT_a(M_n)$, where $N=\binom{m+r}r-1$. To get such a decomposition $J_m^rM_n$ it is sufficient to take a linear connection on $M$. We use this decomposition to construct lifts of linear forms, vector fields and Riemannian metrics from the base $M_n$ into the bundle $J_m^rM_n$.
@article{KUTGS_1997_23_a12,
author = {A. Ya. Sultanov},
title = {Decomposition of a~jet bundle of differentiable mappings into {a~Whitney} sum of tangent bundles},
journal = {Trudy Geometricheskogo Seminara},
pages = {139--148},
publisher = {mathdoc},
volume = {23},
year = {1997},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/KUTGS_1997_23_a12/}
}
TY - JOUR AU - A. Ya. Sultanov TI - Decomposition of a~jet bundle of differentiable mappings into a~Whitney sum of tangent bundles JO - Trudy Geometricheskogo Seminara PY - 1997 SP - 139 EP - 148 VL - 23 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/KUTGS_1997_23_a12/ LA - ru ID - KUTGS_1997_23_a12 ER -
A. Ya. Sultanov. Decomposition of a~jet bundle of differentiable mappings into a~Whitney sum of tangent bundles. Trudy Geometricheskogo Seminara, Trudy Geometricheskogo Seminara, Tome 23 (1997), pp. 139-148. http://geodesic.mathdoc.fr/item/KUTGS_1997_23_a12/