On the properties of the Riemannian curvature tensor of the linear extension of a quasi-Sasakian manifold
Trudy Geometricheskogo Seminara, Trudy Geometricheskogo Seminara, Tome 23 (1997), pp. 125-138
Voir la notice du chapitre de livre
We study connections between structure tensors of almost contact metric manifold $M$ and the canonical almost Hermitian structure on its linear extension $M\times\mathbb R$. We obtain a complete system of structure equations of the linear extension of quasisasakian manifold. We study connection between curvature identities of the linear extension of quasisasakian manifold and properties of curvature of linear extension of quasisasakian manifold in the two-dimensional direction determined by the bivector $\xi\times X$, where $\xi$ is the structure tensor of quasisasakian structure.
@article{KUTGS_1997_23_a11,
author = {E. V. Rodina},
title = {On the properties of the {Riemannian} curvature tensor of the linear extension of a {quasi-Sasakian} manifold},
journal = {Trudy Geometricheskogo Seminara},
pages = {125--138},
year = {1997},
volume = {23},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/KUTGS_1997_23_a11/}
}
TY - JOUR AU - E. V. Rodina TI - On the properties of the Riemannian curvature tensor of the linear extension of a quasi-Sasakian manifold JO - Trudy Geometricheskogo Seminara PY - 1997 SP - 125 EP - 138 VL - 23 UR - http://geodesic.mathdoc.fr/item/KUTGS_1997_23_a11/ LA - ru ID - KUTGS_1997_23_a11 ER -
E. V. Rodina. On the properties of the Riemannian curvature tensor of the linear extension of a quasi-Sasakian manifold. Trudy Geometricheskogo Seminara, Trudy Geometricheskogo Seminara, Tome 23 (1997), pp. 125-138. http://geodesic.mathdoc.fr/item/KUTGS_1997_23_a11/