On the properties of the Riemannian curvature tensor of the linear extension of a quasi-Sasakian manifold
Trudy Geometricheskogo Seminara, Trudy Geometricheskogo Seminara, Tome 23 (1997), pp. 125-138
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study connections between structure tensors of almost contact metric manifold $M$ and the canonical almost Hermitian structure on its linear extension $M\times\mathbb R$. We obtain a complete system of structure equations of the linear extension of quasisasakian manifold. We study connection between curvature identities of the linear extension of quasisasakian manifold and properties of curvature of linear extension of quasisasakian manifold in the two-dimensional direction determined by the bivector $\xi\times X$, where $\xi$ is the structure tensor of quasisasakian structure.
@article{KUTGS_1997_23_a11,
     author = {E. V. Rodina},
     title = {On the properties of the {Riemannian} curvature tensor of the linear extension of a {quasi-Sasakian} manifold},
     journal = {Trudy Geometricheskogo Seminara},
     pages = {125--138},
     year = {1997},
     volume = {23},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/KUTGS_1997_23_a11/}
}
TY  - JOUR
AU  - E. V. Rodina
TI  - On the properties of the Riemannian curvature tensor of the linear extension of a quasi-Sasakian manifold
JO  - Trudy Geometricheskogo Seminara
PY  - 1997
SP  - 125
EP  - 138
VL  - 23
UR  - http://geodesic.mathdoc.fr/item/KUTGS_1997_23_a11/
LA  - ru
ID  - KUTGS_1997_23_a11
ER  - 
%0 Journal Article
%A E. V. Rodina
%T On the properties of the Riemannian curvature tensor of the linear extension of a quasi-Sasakian manifold
%J Trudy Geometricheskogo Seminara
%D 1997
%P 125-138
%V 23
%U http://geodesic.mathdoc.fr/item/KUTGS_1997_23_a11/
%G ru
%F KUTGS_1997_23_a11
E. V. Rodina. On the properties of the Riemannian curvature tensor of the linear extension of a quasi-Sasakian manifold. Trudy Geometricheskogo Seminara, Trudy Geometricheskogo Seminara, Tome 23 (1997), pp. 125-138. http://geodesic.mathdoc.fr/item/KUTGS_1997_23_a11/