Lemma on the regularity of a measure
Konstruktivnaya Teoriya Funktsii i Funktsional'nyi Analiz, Konstruktivnaya Teoriya Funktsii i Funktsional'nyi Analiz, Tome 3 (1981) no. 3, pp. 51-54
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{KUKTF_1981_3_3_a6,
author = {M. S. Matveichuk},
title = {Lemma on the regularity of a~measure},
journal = {Konstruktivnaya Teoriya Funktsii i Funktsional'nyi Analiz},
pages = {51--54},
year = {1981},
volume = {3},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/KUKTF_1981_3_3_a6/}
}
M. S. Matveichuk. Lemma on the regularity of a measure. Konstruktivnaya Teoriya Funktsii i Funktsional'nyi Analiz, Konstruktivnaya Teoriya Funktsii i Funktsional'nyi Analiz, Tome 3 (1981) no. 3, pp. 51-54. http://geodesic.mathdoc.fr/item/KUKTF_1981_3_3_a6/
[1] Lodkin A. A., “Vsyakaya mera na proektorakh $W^*$-algebry prodolzhaetsya do sostoyaniya”, Funkts. analiz i ego pril., 8:4 (1974), 54–58 | MR | Zbl
[2] Gunson J., “Physical states on Quantum Logics. I”, Ann. Inst. Henri Poincaré, XVII:4 (1972), 295–311 | MR
[3] Naimark M. A., Normirovannye koltsa, Nauka, M., 1968 | MR | Zbl
[4] Dixmier J., Les algèbres d'opérateurs dans l'espace hilbertien, Gautier-Villars, Paris, 1969 | MR | Zbl