Construction of a polynomial for best approximation of a derivative function in $L_2[-1,1]$
Konstruktivnaya Teoriya Funktsii i Funktsional'nyi Analiz, Konstruktivnaya Teoriya Funktsii i Funktsional'nyi Analiz, Tome 3 (1981) no. 3, pp. 38-43 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

@article{KUKTF_1981_3_3_a4,
     author = {A. L. Kuz'mina},
     title = {Construction of a~polynomial for best approximation of a~derivative function in~$L_2[-1,1]$},
     journal = {Konstruktivnaya Teoriya Funktsii i Funktsional'nyi Analiz},
     pages = {38--43},
     year = {1981},
     volume = {3},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/KUKTF_1981_3_3_a4/}
}
TY  - JOUR
AU  - A. L. Kuz'mina
TI  - Construction of a polynomial for best approximation of a derivative function in $L_2[-1,1]$
JO  - Konstruktivnaya Teoriya Funktsii i Funktsional'nyi Analiz
PY  - 1981
SP  - 38
EP  - 43
VL  - 3
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/KUKTF_1981_3_3_a4/
LA  - ru
ID  - KUKTF_1981_3_3_a4
ER  - 
%0 Journal Article
%A A. L. Kuz'mina
%T Construction of a polynomial for best approximation of a derivative function in $L_2[-1,1]$
%J Konstruktivnaya Teoriya Funktsii i Funktsional'nyi Analiz
%D 1981
%P 38-43
%V 3
%N 3
%U http://geodesic.mathdoc.fr/item/KUKTF_1981_3_3_a4/
%G ru
%F KUKTF_1981_3_3_a4
A. L. Kuz'mina. Construction of a polynomial for best approximation of a derivative function in $L_2[-1,1]$. Konstruktivnaya Teoriya Funktsii i Funktsional'nyi Analiz, Konstruktivnaya Teoriya Funktsii i Funktsional'nyi Analiz, Tome 3 (1981) no. 3, pp. 38-43. http://geodesic.mathdoc.fr/item/KUKTF_1981_3_3_a4/

[1] Shuvalova E. Z., “O postroenii elementa nailuchshego priblizheniya proizvodnoi”, UMN, 33:5(203) (1978), 203–204 | MR | Zbl

[2] Natanson I. P., Konstruktivnaya teoriya funktsii, M.–L., 1949 | MR