Construction of approximations for an integro-differential equation
Konstruktivnaya Teoriya Funktsii i Funktsional'nyi Analiz, Konstruktivnaya Teoriya Funktsii i Funktsional'nyi Analiz, Tome 1 (1977) no. 1, pp. 40-44 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

@article{KUKTF_1977_1_1_a6,
     author = {S. S. Musina},
     title = {Construction of approximations for an integro-differential equation},
     journal = {Konstruktivnaya Teoriya Funktsii i Funktsional'nyi Analiz},
     pages = {40--44},
     year = {1977},
     volume = {1},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/KUKTF_1977_1_1_a6/}
}
TY  - JOUR
AU  - S. S. Musina
TI  - Construction of approximations for an integro-differential equation
JO  - Konstruktivnaya Teoriya Funktsii i Funktsional'nyi Analiz
PY  - 1977
SP  - 40
EP  - 44
VL  - 1
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/KUKTF_1977_1_1_a6/
LA  - ru
ID  - KUKTF_1977_1_1_a6
ER  - 
%0 Journal Article
%A S. S. Musina
%T Construction of approximations for an integro-differential equation
%J Konstruktivnaya Teoriya Funktsii i Funktsional'nyi Analiz
%D 1977
%P 40-44
%V 1
%N 1
%U http://geodesic.mathdoc.fr/item/KUKTF_1977_1_1_a6/
%G ru
%F KUKTF_1977_1_1_a6
S. S. Musina. Construction of approximations for an integro-differential equation. Konstruktivnaya Teoriya Funktsii i Funktsional'nyi Analiz, Konstruktivnaya Teoriya Funktsii i Funktsional'nyi Analiz, Tome 1 (1977) no. 1, pp. 40-44. http://geodesic.mathdoc.fr/item/KUKTF_1977_1_1_a6/

[1] Luzin N. N., “O metode priblizhennogo integrirovaniya akademika S. A. Chaplygina”, Trudy TsAGI, 1932, no. 141, 1–32

[2] Musina S. A., “Ob odnom metode postroeniya priblizhenii dlya integro-differentsialnykh uravnenii”, Razlozhenie po ortogonalnym mnogochlenam, Izd-vo Kazanskogo un-ta, 1972, 82–88

[3] Musina S. S., “Priblizhennoe reshenie nelineinykh integro-differentsialnykh uravnenii s obyknovennymi proizvodnymi”, sb. rabot NIIMM, Uchen. zap. Kazanskogo un-ta, 113, no. 10, 1953, 169–187

[4] Chaplygin S. A., Novyi metod priblizhennogo integrirovaniya differentsialnykh uravnenii, GTTI, M.–L., 1950