On Vertex-Edge and Edge-Vertex Connectivity Indices of Graphs
Kragujevac Journal of Mathematics, Tome 48 (2024) no. 2, p. 225
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Let $G$ be a graph with vertex set $V(G)$ and edge set $E(G)$. The vertex-edge degree of the vertex $v$, $d^e_{G}(v),$ equals to the number of different edges that are incident to any vertex from the open neighborhood of $v$. Also, the edge-vertex degree of the edge $e=uv$, $d_G^v(e)$, equals to the number of vertices of the union of the open neighborhood of $u$ and $v$. In this paper, the vertex-edge connectivity index, $\phi_v$, and the edge-vertex connectivity index, $\phi_e$, of a graph $G$ were introduced. These are defined as $\phi_v(G)=\sum_{v\in V(G)}d_G^e(v)d_G(v)$ and $\phi_e(G)=\sum_{e=uv\in E(G)}d_G(e)d_G^v(e)$, where $d_G(v)$ is the degree of a vertex $v \in V(G)$ and $d_G(e)$ is the number of edges in $E(G)$ that are adjacent to $e$. In this paper, we will study the main properties of $\phi_v(G)$, $\phi_e(G)$ and establish some upper and lower bounds for them. The numbers $\phi_v$ and $\phi_e$ for titania nanotubes are also computed.
Classification :
05C09, 05C07, 05C35
Keywords: vertex-edge degree, edge-vertex degree, vertex-edge connectivity index, edge-vertex connectivity index
Keywords: vertex-edge degree, edge-vertex degree, vertex-edge connectivity index, edge-vertex connectivity index
@article{KJM_2024_48_2_a3,
author = {Shiladhar Pawar and Ahmed Mohsen Naji and Nandappa D. Soner and Ali Reza Ashrafi and Ali Ghalav},
title = {On {Vertex-Edge} and {Edge-Vertex} {Connectivity} {Indices} of {Graphs}},
journal = {Kragujevac Journal of Mathematics},
pages = {225 },
publisher = {mathdoc},
volume = {48},
number = {2},
year = {2024},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2024_48_2_a3/}
}
TY - JOUR AU - Shiladhar Pawar AU - Ahmed Mohsen Naji AU - Nandappa D. Soner AU - Ali Reza Ashrafi AU - Ali Ghalav TI - On Vertex-Edge and Edge-Vertex Connectivity Indices of Graphs JO - Kragujevac Journal of Mathematics PY - 2024 SP - 225 VL - 48 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/KJM_2024_48_2_a3/ LA - en ID - KJM_2024_48_2_a3 ER -
%0 Journal Article %A Shiladhar Pawar %A Ahmed Mohsen Naji %A Nandappa D. Soner %A Ali Reza Ashrafi %A Ali Ghalav %T On Vertex-Edge and Edge-Vertex Connectivity Indices of Graphs %J Kragujevac Journal of Mathematics %D 2024 %P 225 %V 48 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/KJM_2024_48_2_a3/ %G en %F KJM_2024_48_2_a3
Shiladhar Pawar; Ahmed Mohsen Naji; Nandappa D. Soner; Ali Reza Ashrafi; Ali Ghalav. On Vertex-Edge and Edge-Vertex Connectivity Indices of Graphs. Kragujevac Journal of Mathematics, Tome 48 (2024) no. 2, p. 225 . http://geodesic.mathdoc.fr/item/KJM_2024_48_2_a3/