On Vertex-Edge and Edge-Vertex Connectivity Indices of Graphs
Kragujevac Journal of Mathematics, Tome 48 (2024) no. 2, p. 225 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $G$ be a graph with vertex set $V(G)$ and edge set $E(G)$. The vertex-edge degree of the vertex $v$, $d^e_{G}(v),$ equals to the number of different edges that are incident to any vertex from the open neighborhood of $v$. Also, the edge-vertex degree of the edge $e=uv$, $d_G^v(e)$, equals to the number of vertices of the union of the open neighborhood of $u$ and $v$. In this paper, the vertex-edge connectivity index, $\phi_v$, and the edge-vertex connectivity index, $\phi_e$, of a graph $G$ were introduced. These are defined as $\phi_v(G)=\sum_{v\in V(G)}d_G^e(v)d_G(v)$ and $\phi_e(G)=\sum_{e=uv\in E(G)}d_G(e)d_G^v(e)$, where $d_G(v)$ is the degree of a vertex $v \in V(G)$ and $d_G(e)$ is the number of edges in $E(G)$ that are adjacent to $e$. In this paper, we will study the main properties of $\phi_v(G)$, $\phi_e(G)$ and establish some upper and lower bounds for them. The numbers $\phi_v$ and $\phi_e$ for titania nanotubes are also computed.
Classification : 05C09, 05C07, 05C35
Keywords: vertex-edge degree, edge-vertex degree, vertex-edge connectivity index, edge-vertex connectivity index
@article{KJM_2024_48_2_a3,
     author = {Shiladhar Pawar and Ahmed Mohsen Naji and Nandappa D. Soner and Ali Reza Ashrafi and Ali Ghalav},
     title = {On {Vertex-Edge} and {Edge-Vertex} {Connectivity} {Indices} of {Graphs}},
     journal = {Kragujevac Journal of Mathematics},
     pages = {225 },
     publisher = {mathdoc},
     volume = {48},
     number = {2},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2024_48_2_a3/}
}
TY  - JOUR
AU  - Shiladhar Pawar
AU  - Ahmed Mohsen Naji
AU  - Nandappa D. Soner
AU  - Ali Reza Ashrafi
AU  - Ali Ghalav
TI  - On Vertex-Edge and Edge-Vertex Connectivity Indices of Graphs
JO  - Kragujevac Journal of Mathematics
PY  - 2024
SP  - 225 
VL  - 48
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2024_48_2_a3/
LA  - en
ID  - KJM_2024_48_2_a3
ER  - 
%0 Journal Article
%A Shiladhar Pawar
%A Ahmed Mohsen Naji
%A Nandappa D. Soner
%A Ali Reza Ashrafi
%A Ali Ghalav
%T On Vertex-Edge and Edge-Vertex Connectivity Indices of Graphs
%J Kragujevac Journal of Mathematics
%D 2024
%P 225 
%V 48
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2024_48_2_a3/
%G en
%F KJM_2024_48_2_a3
Shiladhar Pawar; Ahmed Mohsen Naji; Nandappa D. Soner; Ali Reza Ashrafi; Ali Ghalav. On Vertex-Edge and Edge-Vertex Connectivity Indices of Graphs. Kragujevac Journal of Mathematics, Tome 48 (2024) no. 2, p. 225 . http://geodesic.mathdoc.fr/item/KJM_2024_48_2_a3/