Existence Results for a Fractional Differential Inclusion of Arbitrary Order with Three-Point Boundary Conditions
Kragujevac Journal of Mathematics, Tome 47 (2023) no. 6, p. 935
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
This paper studies existence of solutions for a new class of fractional differential inclusions of arbitrary order with three-point fractional integral boundary conditions. Our results are based on Bohnenblust-Karlin's fixed point theorem.
Classification :
34B15, 26A33
@article{KJM_2023_47_6_a7,
author = {Sachin Kumar Verma and Ramesh Kumar Vats and Hemant Kumar Nashine and H. M. Srivastava},
title = {Existence {Results} for a {Fractional} {Differential} {Inclusion} of {Arbitrary} {Order} with {Three-Point} {Boundary} {Conditions}},
journal = {Kragujevac Journal of Mathematics},
pages = {935 },
year = {2023},
volume = {47},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2023_47_6_a7/}
}
TY - JOUR AU - Sachin Kumar Verma AU - Ramesh Kumar Vats AU - Hemant Kumar Nashine AU - H. M. Srivastava TI - Existence Results for a Fractional Differential Inclusion of Arbitrary Order with Three-Point Boundary Conditions JO - Kragujevac Journal of Mathematics PY - 2023 SP - 935 VL - 47 IS - 6 UR - http://geodesic.mathdoc.fr/item/KJM_2023_47_6_a7/ LA - en ID - KJM_2023_47_6_a7 ER -
%0 Journal Article %A Sachin Kumar Verma %A Ramesh Kumar Vats %A Hemant Kumar Nashine %A H. M. Srivastava %T Existence Results for a Fractional Differential Inclusion of Arbitrary Order with Three-Point Boundary Conditions %J Kragujevac Journal of Mathematics %D 2023 %P 935 %V 47 %N 6 %U http://geodesic.mathdoc.fr/item/KJM_2023_47_6_a7/ %G en %F KJM_2023_47_6_a7
Sachin Kumar Verma; Ramesh Kumar Vats; Hemant Kumar Nashine; H. M. Srivastava. Existence Results for a Fractional Differential Inclusion of Arbitrary Order with Three-Point Boundary Conditions. Kragujevac Journal of Mathematics, Tome 47 (2023) no. 6, p. 935 . http://geodesic.mathdoc.fr/item/KJM_2023_47_6_a7/