Existence Results for a Fractional Differential Inclusion of Arbitrary Order with Three-Point Boundary Conditions
Kragujevac Journal of Mathematics, Tome 47 (2023) no. 6, p. 935
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
This paper studies existence of solutions for a new class of fractional differential inclusions of arbitrary order with three-point fractional integral boundary conditions. Our results are based on Bohnenblust-Karlin's fixed point theorem.
Classification :
34B15, 26A33
@article{KJM_2023_47_6_a7,
author = {Sachin Kumar Verma and Ramesh Kumar Vats and Hemant Kumar Nashine and H. M. Srivastava},
title = {Existence {Results} for a {Fractional} {Differential} {Inclusion} of {Arbitrary} {Order} with {Three-Point} {Boundary} {Conditions}},
journal = {Kragujevac Journal of Mathematics},
pages = {935 },
publisher = {mathdoc},
volume = {47},
number = {6},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2023_47_6_a7/}
}
TY - JOUR AU - Sachin Kumar Verma AU - Ramesh Kumar Vats AU - Hemant Kumar Nashine AU - H. M. Srivastava TI - Existence Results for a Fractional Differential Inclusion of Arbitrary Order with Three-Point Boundary Conditions JO - Kragujevac Journal of Mathematics PY - 2023 SP - 935 VL - 47 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/KJM_2023_47_6_a7/ LA - en ID - KJM_2023_47_6_a7 ER -
%0 Journal Article %A Sachin Kumar Verma %A Ramesh Kumar Vats %A Hemant Kumar Nashine %A H. M. Srivastava %T Existence Results for a Fractional Differential Inclusion of Arbitrary Order with Three-Point Boundary Conditions %J Kragujevac Journal of Mathematics %D 2023 %P 935 %V 47 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/KJM_2023_47_6_a7/ %G en %F KJM_2023_47_6_a7
Sachin Kumar Verma; Ramesh Kumar Vats; Hemant Kumar Nashine; H. M. Srivastava. Existence Results for a Fractional Differential Inclusion of Arbitrary Order with Three-Point Boundary Conditions. Kragujevac Journal of Mathematics, Tome 47 (2023) no. 6, p. 935 . http://geodesic.mathdoc.fr/item/KJM_2023_47_6_a7/