Structure of $3$-Prime Near Rings with Generalized $(\sigma,\tau)$-$n$-Derivations
Kragujevac Journal of Mathematics, Tome 47 (2023) no. 6, p. 891
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In this paper, we define generalized $(\sigma,\tau)$-$n$-derivation for any mappings $\sigma$ and $\tau$ of a near ring $N$ and also investigate the structure of a $3$-prime near ring satisfying certain identities with generalized $(\sigma,\tau)$-$n$-derivation. Moreover, we characterize the aforementioned mappings.
Classification :
16N60, 16W25, 16Y30
Keywords: 3-prime near ring, semigroup ideal, $(\sigma;\tau)$-$n$-derivations, generalized $(\sigma;\tau)$-$n$-derivations
Keywords: 3-prime near ring, semigroup ideal, $(\sigma;\tau)$-$n$-derivations, generalized $(\sigma;\tau)$-$n$-derivations
@article{KJM_2023_47_6_a5,
author = {Asma Ali and Abdelkarim Boua and Inzamam Ul Huque},
title = {Structure of $3${-Prime} {Near} {Rings} with {Generalized} $(\sigma,\tau)$-$n${-Derivations}},
journal = {Kragujevac Journal of Mathematics},
pages = {891 },
year = {2023},
volume = {47},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2023_47_6_a5/}
}
TY - JOUR AU - Asma Ali AU - Abdelkarim Boua AU - Inzamam Ul Huque TI - Structure of $3$-Prime Near Rings with Generalized $(\sigma,\tau)$-$n$-Derivations JO - Kragujevac Journal of Mathematics PY - 2023 SP - 891 VL - 47 IS - 6 UR - http://geodesic.mathdoc.fr/item/KJM_2023_47_6_a5/ LA - en ID - KJM_2023_47_6_a5 ER -
Asma Ali; Abdelkarim Boua; Inzamam Ul Huque. Structure of $3$-Prime Near Rings with Generalized $(\sigma,\tau)$-$n$-Derivations. Kragujevac Journal of Mathematics, Tome 47 (2023) no. 6, p. 891 . http://geodesic.mathdoc.fr/item/KJM_2023_47_6_a5/