Controlled Integral Frames for Hilbert $C^\ast$-Modules
Kragujevac Journal of Mathematics, Tome 47 (2023) no. 6, p. 877
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
The notion of controlled frames for Hilbert spaces were introduced by Balazs, Antoine and Grybos to improve the numerical efficiency of iterative algorithms for inverting the frame operator. Controlled frame theory has a great revolution in recent years. This theory have been extended from Hilbert spaces to Hilbert $C^{\ast}$-modules. In this paper we introduce and study the extension of this notion to integral frame for Hilbert $C^{\ast}$-modules. Also we give some characterizations between integral frame in Hilbert $C^{\ast}$-modules.
Classification :
42C15, 46L06
Keywords: Integral frames, integral $\ast$-frame, controlled integral frames, controlled integral $\ast$-frame, $C^\ast$-algebra, Hilbert $\mathcalA$-modules
Keywords: Integral frames, integral $\ast$-frame, controlled integral frames, controlled integral $\ast$-frame, $C^\ast$-algebra, Hilbert $\mathcalA$-modules
@article{KJM_2023_47_6_a4,
author = {Hatim Labrigui and Samir Kabbaj},
title = {Controlled {Integral} {Frames} for {Hilbert} $C^\ast${-Modules}},
journal = {Kragujevac Journal of Mathematics},
pages = {877 },
publisher = {mathdoc},
volume = {47},
number = {6},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2023_47_6_a4/}
}
Hatim Labrigui; Samir Kabbaj. Controlled Integral Frames for Hilbert $C^\ast$-Modules. Kragujevac Journal of Mathematics, Tome 47 (2023) no. 6, p. 877 . http://geodesic.mathdoc.fr/item/KJM_2023_47_6_a4/