Stability of an $l$-Variable Cubic Functional Equation
Kragujevac Journal of Mathematics, Tome 47 (2023) no. 6, p. 851 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Using the direct and fixed point methods, we obtain the solution and prove the Hyers-Ulam stability of the $l$-variable cubic functional equation \begin{align*} (um_{i=1}^{l}x_i\right)+um_{j=1}^{l}feft(-lx_j+um_{i=1,ieq j}^{l}x_i\right) =-2(l+1)um_{i=1,ieq jeq k}^{l}f(x_i+x_j+x_k) +(3l^2-2l-5)um_{i=1,ieq j}^{l}f(x_i+x_j) -3(l^3-l^2-l+1)um_{i=1}^{l}f(x_i), \end{align*} $l\in {\mathbb{N}}$, $l\geq 3$, in random normed spaces.
Classification : 39B52, 47H10, 39B72, 39B82
Keywords: Cubic functional equation, fixed point, Hyers-Ulam stability, random normed space
@article{KJM_2023_47_6_a2,
     author = {Vediyappan Govindan and Sandra Pinelas and Jung Rye Lee and Choonkil Park},
     title = {Stability of an $l${-Variable} {Cubic} {Functional} {Equation}},
     journal = {Kragujevac Journal of Mathematics},
     pages = {851 },
     publisher = {mathdoc},
     volume = {47},
     number = {6},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2023_47_6_a2/}
}
TY  - JOUR
AU  - Vediyappan Govindan
AU  - Sandra Pinelas
AU  - Jung Rye Lee
AU  - Choonkil Park
TI  - Stability of an $l$-Variable Cubic Functional Equation
JO  - Kragujevac Journal of Mathematics
PY  - 2023
SP  - 851 
VL  - 47
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2023_47_6_a2/
LA  - en
ID  - KJM_2023_47_6_a2
ER  - 
%0 Journal Article
%A Vediyappan Govindan
%A Sandra Pinelas
%A Jung Rye Lee
%A Choonkil Park
%T Stability of an $l$-Variable Cubic Functional Equation
%J Kragujevac Journal of Mathematics
%D 2023
%P 851 
%V 47
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2023_47_6_a2/
%G en
%F KJM_2023_47_6_a2
Vediyappan Govindan; Sandra Pinelas; Jung Rye Lee; Choonkil Park. Stability of an $l$-Variable Cubic Functional Equation. Kragujevac Journal of Mathematics, Tome 47 (2023) no. 6, p. 851 . http://geodesic.mathdoc.fr/item/KJM_2023_47_6_a2/