Three Solutions for $p$-Hamiltonian Systems with Impulsive Effects
Kragujevac Journal of Mathematics, Tome 47 (2023) no. 4, p. 499
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In this paper, we give some new criteria that guarantee the existence of at least three weak solutions to a $p$-Hamiltonian boundary value problem generated by impulsive effects. To ensure the existence of these solutions, we use variational methods and critical point theory as our main tools.
Classification :
34B15, 34B37, 58E30
Keywords: weak solution, $p$-Hamiltonian boundary value problem, impulsive effect, critical point theory, variational methods
Keywords: weak solution, $p$-Hamiltonian boundary value problem, impulsive effect, critical point theory, variational methods
@article{KJM_2023_47_4_a0,
author = {Hadi Haghshenas and Ghasem A. Afrouzi},
title = {Three {Solutions} for $p${-Hamiltonian} {Systems} with {Impulsive} {Effects}},
journal = {Kragujevac Journal of Mathematics},
pages = {499 },
year = {2023},
volume = {47},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2023_47_4_a0/}
}
Hadi Haghshenas; Ghasem A. Afrouzi. Three Solutions for $p$-Hamiltonian Systems with Impulsive Effects. Kragujevac Journal of Mathematics, Tome 47 (2023) no. 4, p. 499 . http://geodesic.mathdoc.fr/item/KJM_2023_47_4_a0/