Three Solutions for $p$-Hamiltonian Systems with Impulsive Effects
Kragujevac Journal of Mathematics, Tome 47 (2023) no. 4, p. 499 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In this paper, we give some new criteria that guarantee the existence of at least three weak solutions to a $p$-Hamiltonian boundary value problem generated by impulsive effects. To ensure the existence of these solutions, we use variational methods and critical point theory as our main tools.
Classification : 34B15, 34B37, 58E30
Keywords: weak solution, $p$-Hamiltonian boundary value problem, impulsive effect, critical point theory, variational methods
@article{KJM_2023_47_4_a0,
     author = {Hadi Haghshenas and Ghasem A. Afrouzi},
     title = {Three {Solutions} for $p${-Hamiltonian} {Systems} with {Impulsive} {Effects}},
     journal = {Kragujevac Journal of Mathematics},
     pages = {499 },
     publisher = {mathdoc},
     volume = {47},
     number = {4},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2023_47_4_a0/}
}
TY  - JOUR
AU  - Hadi Haghshenas
AU  - Ghasem A. Afrouzi
TI  - Three Solutions for $p$-Hamiltonian Systems with Impulsive Effects
JO  - Kragujevac Journal of Mathematics
PY  - 2023
SP  - 499 
VL  - 47
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2023_47_4_a0/
LA  - en
ID  - KJM_2023_47_4_a0
ER  - 
%0 Journal Article
%A Hadi Haghshenas
%A Ghasem A. Afrouzi
%T Three Solutions for $p$-Hamiltonian Systems with Impulsive Effects
%J Kragujevac Journal of Mathematics
%D 2023
%P 499 
%V 47
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2023_47_4_a0/
%G en
%F KJM_2023_47_4_a0
Hadi Haghshenas; Ghasem A. Afrouzi. Three Solutions for $p$-Hamiltonian Systems with Impulsive Effects. Kragujevac Journal of Mathematics, Tome 47 (2023) no. 4, p. 499 . http://geodesic.mathdoc.fr/item/KJM_2023_47_4_a0/