The family of Szász-Durrmeyer Type Operators Involving Charlier Polynomials
Kragujevac Journal of Mathematics, Tome 47 (2023) no. 3, p. 431

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In this paper, we consider Szász-Durrmeyer type operators based on Charlier polynomials associated with Srivastava-Gupta operators \cite{SG:03}. For the considered operators, we discuss error of estimation by using first and second order modulus of continuity, Lipchtiz-type space, Ditzian-Totik modulus of smoothness, Voronovskaya type asymptotic formula and weighted modulus of continuity.
Classification : 41A25, 41A36
Keywords: Charlier polynomials, Srivastava-Gupta operators, modulus of continuity, Ditzian-Totik modulus of smoothness, weighted modulus of continuity
@article{KJM_2023_47_3_a7,
     author = {Naokant Deo and Ram Pratap},
     title = {The family of {Sz\'asz-Durrmeyer} {Type} {Operators} {Involving} {Charlier} {Polynomials}},
     journal = {Kragujevac Journal of Mathematics},
     pages = {431 },
     publisher = {mathdoc},
     volume = {47},
     number = {3},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2023_47_3_a7/}
}
TY  - JOUR
AU  - Naokant Deo
AU  - Ram Pratap
TI  - The family of Szász-Durrmeyer Type Operators Involving Charlier Polynomials
JO  - Kragujevac Journal of Mathematics
PY  - 2023
SP  - 431 
VL  - 47
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2023_47_3_a7/
LA  - en
ID  - KJM_2023_47_3_a7
ER  - 
%0 Journal Article
%A Naokant Deo
%A Ram Pratap
%T The family of Szász-Durrmeyer Type Operators Involving Charlier Polynomials
%J Kragujevac Journal of Mathematics
%D 2023
%P 431 
%V 47
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2023_47_3_a7/
%G en
%F KJM_2023_47_3_a7
Naokant Deo; Ram Pratap. The family of Szász-Durrmeyer Type Operators Involving Charlier Polynomials. Kragujevac Journal of Mathematics, Tome 47 (2023) no. 3, p. 431 . http://geodesic.mathdoc.fr/item/KJM_2023_47_3_a7/