On Zero Free Regions for Derivatives of a Polynomial
Kragujevac Journal of Mathematics, Tome 47 (2023) no. 3, p. 403

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $P_{n}$ denote the set of polynomials of the form $p(z)= (z-a)^{m} rod_{k=1}^{n-m} (z-z_{k}),$ with $|a|\leq 1$ and $|z_{k}| \geq 1$ for $1\leq k \leq n-m.$ For the polynomials of the form $p(z)= z \prod_{k=1}^{n-1} (z-z_{k}), $ with $|z_{k}| \geq 1$, where $1\leq k \leq n-1$, Brown \cite{AO1} stated the problem ``Find the best constant $C_{n}$ such that $p'(z)$ does not vanish in $|z| C_{n}$''. He also conjectured in the same paper that $C_{n} = \frac{1}{n}$. This problem was solved by Aziz and Zarger \cite{Alt}. In this paper, we obtain the results which generalizes the results of Aziz and Zarger.
Classification : 12D10
Keywords: Polynomials, zeros, critical points, derivative, region
@article{KJM_2023_47_3_a4,
     author = {Mohammad Ibrahim Mir and Ishfaq Nazir and Irfan Ahmad Wani},
     title = {On {Zero} {Free} {Regions} for {Derivatives} of a {Polynomial}},
     journal = {Kragujevac Journal of Mathematics},
     pages = {403 },
     publisher = {mathdoc},
     volume = {47},
     number = {3},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2023_47_3_a4/}
}
TY  - JOUR
AU  - Mohammad Ibrahim Mir
AU  - Ishfaq Nazir
AU  - Irfan Ahmad Wani
TI  - On Zero Free Regions for Derivatives of a Polynomial
JO  - Kragujevac Journal of Mathematics
PY  - 2023
SP  - 403 
VL  - 47
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2023_47_3_a4/
LA  - en
ID  - KJM_2023_47_3_a4
ER  - 
%0 Journal Article
%A Mohammad Ibrahim Mir
%A Ishfaq Nazir
%A Irfan Ahmad Wani
%T On Zero Free Regions for Derivatives of a Polynomial
%J Kragujevac Journal of Mathematics
%D 2023
%P 403 
%V 47
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2023_47_3_a4/
%G en
%F KJM_2023_47_3_a4
Mohammad Ibrahim Mir; Ishfaq Nazir; Irfan Ahmad Wani. On Zero Free Regions for Derivatives of a Polynomial. Kragujevac Journal of Mathematics, Tome 47 (2023) no. 3, p. 403 . http://geodesic.mathdoc.fr/item/KJM_2023_47_3_a4/