On Zero Free Regions for Derivatives of a Polynomial
Kragujevac Journal of Mathematics, Tome 47 (2023) no. 3, p. 403 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $P_{n}$ denote the set of polynomials of the form $p(z)= (z-a)^{m} rod_{k=1}^{n-m} (z-z_{k}),$ with $|a|\leq 1$ and $|z_{k}| \geq 1$ for $1\leq k \leq n-m.$ For the polynomials of the form $p(z)= z \prod_{k=1}^{n-1} (z-z_{k}), $ with $|z_{k}| \geq 1$, where $1\leq k \leq n-1$, Brown \cite{AO1} stated the problem ``Find the best constant $C_{n}$ such that $p'(z)$ does not vanish in $|z| C_{n}$''. He also conjectured in the same paper that $C_{n} = \frac{1}{n}$. This problem was solved by Aziz and Zarger \cite{Alt}. In this paper, we obtain the results which generalizes the results of Aziz and Zarger.
Classification : 12D10
Keywords: Polynomials, zeros, critical points, derivative, region
@article{KJM_2023_47_3_a4,
     author = {Mohammad Ibrahim Mir and Ishfaq Nazir and Irfan Ahmad Wani},
     title = {On {Zero} {Free} {Regions} for {Derivatives} of a {Polynomial}},
     journal = {Kragujevac Journal of Mathematics},
     pages = {403 },
     publisher = {mathdoc},
     volume = {47},
     number = {3},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2023_47_3_a4/}
}
TY  - JOUR
AU  - Mohammad Ibrahim Mir
AU  - Ishfaq Nazir
AU  - Irfan Ahmad Wani
TI  - On Zero Free Regions for Derivatives of a Polynomial
JO  - Kragujevac Journal of Mathematics
PY  - 2023
SP  - 403 
VL  - 47
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2023_47_3_a4/
LA  - en
ID  - KJM_2023_47_3_a4
ER  - 
%0 Journal Article
%A Mohammad Ibrahim Mir
%A Ishfaq Nazir
%A Irfan Ahmad Wani
%T On Zero Free Regions for Derivatives of a Polynomial
%J Kragujevac Journal of Mathematics
%D 2023
%P 403 
%V 47
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2023_47_3_a4/
%G en
%F KJM_2023_47_3_a4
Mohammad Ibrahim Mir; Ishfaq Nazir; Irfan Ahmad Wani. On Zero Free Regions for Derivatives of a Polynomial. Kragujevac Journal of Mathematics, Tome 47 (2023) no. 3, p. 403 . http://geodesic.mathdoc.fr/item/KJM_2023_47_3_a4/