On the Semigroup of Bi-Ideals of an Ordered Semigroup
Kragujevac Journal of Mathematics, Tome 47 (2023) no. 3, p. 339 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

The purpose of this paper is to characterize an ordered semigroup $S$ in terms of the properties of the associated semigroup $\mathcal{B}(S)$ of all bi-ideals of $S$. We show that an ordered semigroup $S$ is a Clifford ordered semigroup if and only if $\mathcal{B}(S)$ is a semilattice. The semigroup $\mathcal{B}(S)$ is a normal band if and only if the ordered semigroup $S$ is both regular and intra regular. For each subvariety $\mathcal{V}$ of bands, we characterize the ordered semigroup $S$ such that $\mathcal{B}(S)\in \mathcal{V}$.
Classification : 20M10 06F05
Keywords: Bi-ideal, regular, Clifford, left Clifford, locally testable, left normal band, normal band, rectangular band
@article{KJM_2023_47_3_a0,
     author = {Susmita Mallick and Kalyan Hansda},
     title = {On the {Semigroup} of {Bi-Ideals} of an {Ordered} {Semigroup}},
     journal = {Kragujevac Journal of Mathematics},
     pages = {339 },
     publisher = {mathdoc},
     volume = {47},
     number = {3},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2023_47_3_a0/}
}
TY  - JOUR
AU  - Susmita Mallick
AU  - Kalyan Hansda
TI  - On the Semigroup of Bi-Ideals of an Ordered Semigroup
JO  - Kragujevac Journal of Mathematics
PY  - 2023
SP  - 339 
VL  - 47
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2023_47_3_a0/
LA  - en
ID  - KJM_2023_47_3_a0
ER  - 
%0 Journal Article
%A Susmita Mallick
%A Kalyan Hansda
%T On the Semigroup of Bi-Ideals of an Ordered Semigroup
%J Kragujevac Journal of Mathematics
%D 2023
%P 339 
%V 47
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2023_47_3_a0/
%G en
%F KJM_2023_47_3_a0
Susmita Mallick; Kalyan Hansda. On the Semigroup of Bi-Ideals of an Ordered Semigroup. Kragujevac Journal of Mathematics, Tome 47 (2023) no. 3, p. 339 . http://geodesic.mathdoc.fr/item/KJM_2023_47_3_a0/