Graphs with at most Four Seidel Eigenvalues
Kragujevac Journal of Mathematics, Tome 47 (2023) no. 2, p. 173 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $G$ be a graph of order $n$ with adjacency matrix $A(G)$. The eigenvalues of matrix $ S(G)=J_n-I_n-2A(G)$, where $J_n$ is the $n$ by $n$ matrix with all entries $1$, are called the Seidel eigenvalues of $G$. Let $\mathcal{G}(n,r)$ be the set of all graphs of order $n$ with a single Seidel eigenvalue with multiplicity $r$. In the present work, we will characterize all graphs in the class $\mathcal{G}(n,n-i)$ for $i=1,2$ and for the case $i=3$ our characterization is done by this condition that the nullity of $S(G)$ is zero. If the nullity of $S(G)$ is not zero the problem is solved in special cases.
Classification : 05C50, 05C35
Keywords: interlacing theorem, Seidel eigenvalue, Seidel switching, nullity
@article{KJM_2023_47_2_a0,
     author = {Modjtaba Ghorbani and Mardjan Hakimi-Nezhaad and Bo Zhou},
     title = {Graphs with at most {Four} {Seidel} {Eigenvalues}},
     journal = {Kragujevac Journal of Mathematics},
     pages = {173 },
     publisher = {mathdoc},
     volume = {47},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2023_47_2_a0/}
}
TY  - JOUR
AU  - Modjtaba Ghorbani
AU  - Mardjan Hakimi-Nezhaad
AU  - Bo Zhou
TI  - Graphs with at most Four Seidel Eigenvalues
JO  - Kragujevac Journal of Mathematics
PY  - 2023
SP  - 173 
VL  - 47
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2023_47_2_a0/
LA  - en
ID  - KJM_2023_47_2_a0
ER  - 
%0 Journal Article
%A Modjtaba Ghorbani
%A Mardjan Hakimi-Nezhaad
%A Bo Zhou
%T Graphs with at most Four Seidel Eigenvalues
%J Kragujevac Journal of Mathematics
%D 2023
%P 173 
%V 47
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2023_47_2_a0/
%G en
%F KJM_2023_47_2_a0
Modjtaba Ghorbani; Mardjan Hakimi-Nezhaad; Bo Zhou. Graphs with at most Four Seidel Eigenvalues. Kragujevac Journal of Mathematics, Tome 47 (2023) no. 2, p. 173 . http://geodesic.mathdoc.fr/item/KJM_2023_47_2_a0/