Infinitely Many Solutions to a Fourth-Order Impulsive Differential Equation with Two Control Parameters
Kragujevac Journal of Mathematics, Tome 46 (2022) no. 5, p. 789
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In this article, we give some new criteria to guarantee the infinitely many solutions for a fourth-order impulsive boundary value problem. Our main tool to ensure the existence of infinitely many solutions is the classical Ricceri's Variational Principle.
Classification :
34B15, 34B37, 58E30
Keywords: Infinitely many solutions, impulsive differential equations, critical points, variational methods
Keywords: Infinitely many solutions, impulsive differential equations, critical points, variational methods
@article{KJM_2022_46_5_a9,
author = {Hadi Haghshenas and Ghasem A. Afrouzi},
title = {Infinitely {Many} {Solutions} to a {Fourth-Order} {Impulsive} {Differential} {Equation} with {Two} {Control} {Parameters}},
journal = {Kragujevac Journal of Mathematics},
pages = {789 },
year = {2022},
volume = {46},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2022_46_5_a9/}
}
TY - JOUR AU - Hadi Haghshenas AU - Ghasem A. Afrouzi TI - Infinitely Many Solutions to a Fourth-Order Impulsive Differential Equation with Two Control Parameters JO - Kragujevac Journal of Mathematics PY - 2022 SP - 789 VL - 46 IS - 5 UR - http://geodesic.mathdoc.fr/item/KJM_2022_46_5_a9/ LA - en ID - KJM_2022_46_5_a9 ER -
%0 Journal Article %A Hadi Haghshenas %A Ghasem A. Afrouzi %T Infinitely Many Solutions to a Fourth-Order Impulsive Differential Equation with Two Control Parameters %J Kragujevac Journal of Mathematics %D 2022 %P 789 %V 46 %N 5 %U http://geodesic.mathdoc.fr/item/KJM_2022_46_5_a9/ %G en %F KJM_2022_46_5_a9
Hadi Haghshenas; Ghasem A. Afrouzi. Infinitely Many Solutions to a Fourth-Order Impulsive Differential Equation with Two Control Parameters. Kragujevac Journal of Mathematics, Tome 46 (2022) no. 5, p. 789 . http://geodesic.mathdoc.fr/item/KJM_2022_46_5_a9/