$\mathcal N$-Cubic Sets Applied to Linear Spaces
Kragujevac Journal of Mathematics, Tome 46 (2022) no. 4, p. 575
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
The concept of $\mathcal{N}$-fuzzy sets is a good mathematical tool to deal with uncertainties that use the co-domain $[-1,0]$ for the membership function. The notion of $\mathcal{N}$-cubic sets is defined by combining interval-valued $\mathcal{N}$-fuzzy sets and $\mathcal{N}$-fuzzy sets. Using this $\mathcal{N}$-cubic sets, we initiate a new theory called $\mathcal{N}$-cubic linear spaces. Motivated by the notion of cubic linear spaces we define $P$-union (resp. $R$-union), $P$-intersection (resp. $R$-intersection) of $\mathcal{N}$-cubic linear spaces. The notion of internal and external $\mathcal{N}$-cubic linear spaces and their properties are investigated.
Classification :
08A72 03E72
Keywords: $\mathcal N$-Interval number, interval-valued $\mathcalN$-fuzzy linear space, $\mathcal N$-cubic linear space, internal and external $\mathcal N$-cubic linear spaces, $P$-intersection and $P$-union, $R$-intersection and $R$-union
Keywords: $\mathcal N$-Interval number, interval-valued $\mathcalN$-fuzzy linear space, $\mathcal N$-cubic linear space, internal and external $\mathcal N$-cubic linear spaces, $P$-intersection and $P$-union, $R$-intersection and $R$-union
@article{KJM_2022_46_4_a4,
author = {P. R. Kavyasree and B. Surender Reddy},
title = {$\mathcal N${-Cubic} {Sets} {Applied} to {Linear} {Spaces}},
journal = {Kragujevac Journal of Mathematics},
pages = {575 },
publisher = {mathdoc},
volume = {46},
number = {4},
year = {2022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2022_46_4_a4/}
}
P. R. Kavyasree; B. Surender Reddy. $\mathcal N$-Cubic Sets Applied to Linear Spaces. Kragujevac Journal of Mathematics, Tome 46 (2022) no. 4, p. 575 . http://geodesic.mathdoc.fr/item/KJM_2022_46_4_a4/