$\mathcal N$-Cubic Sets Applied to Linear Spaces
Kragujevac Journal of Mathematics, Tome 46 (2022) no. 4, p. 575
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
The concept of $\mathcal{N}$-fuzzy sets is a good mathematical tool to deal with uncertainties that use the co-domain $[-1,0]$ for the membership function. The notion of $\mathcal{N}$-cubic sets is defined by combining interval-valued $\mathcal{N}$-fuzzy sets and $\mathcal{N}$-fuzzy sets. Using this $\mathcal{N}$-cubic sets, we initiate a new theory called $\mathcal{N}$-cubic linear spaces. Motivated by the notion of cubic linear spaces we define $P$-union (resp. $R$-union), $P$-intersection (resp. $R$-intersection) of $\mathcal{N}$-cubic linear spaces. The notion of internal and external $\mathcal{N}$-cubic linear spaces and their properties are investigated.
Classification :
08A72 03E72
Keywords: $\mathcal N$-Interval number, interval-valued $\mathcalN$-fuzzy linear space, $\mathcal N$-cubic linear space, internal and external $\mathcal N$-cubic linear spaces, $P$-intersection and $P$-union, $R$-intersection and $R$-union
Keywords: $\mathcal N$-Interval number, interval-valued $\mathcalN$-fuzzy linear space, $\mathcal N$-cubic linear space, internal and external $\mathcal N$-cubic linear spaces, $P$-intersection and $P$-union, $R$-intersection and $R$-union
@article{KJM_2022_46_4_a4,
author = {P. R. Kavyasree and B. Surender Reddy},
title = {$\mathcal N${-Cubic} {Sets} {Applied} to {Linear} {Spaces}},
journal = {Kragujevac Journal of Mathematics},
pages = {575 },
year = {2022},
volume = {46},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2022_46_4_a4/}
}
P. R. Kavyasree; B. Surender Reddy. $\mathcal N$-Cubic Sets Applied to Linear Spaces. Kragujevac Journal of Mathematics, Tome 46 (2022) no. 4, p. 575 . http://geodesic.mathdoc.fr/item/KJM_2022_46_4_a4/