Maps Preserving the Spectrum of Skew Lie Product of Operators
Kragujevac Journal of Mathematics, Tome 46 (2022) no. 4, p. 525 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $\lh$ denote the algebra of all bounded linear operators acting on a complex Hilbert space $\h$. In this paper, we show that a surjective map $\vf$ on $\lh$ satisfies \[ igmaeft(ǎrphi(T)ǎrphi(S)-ǎrphi(S)ǎrphi(T)^*\right)=igmaeft(TS-ST^*\right),\quad T,Sıh, \] if and only if there exists a unitary operator $U\in \lh$ such that \[ǎrphi(T)=ambda UTU^{*}, \quad Tıh,\] where $\lambda\in\left\{-1, 1\right\}$.
Classification : 47B49 47A10, 47A11
Keywords: Nonlinear preservers, spectrum, Skew Lie product
@article{KJM_2022_46_4_a1,
     author = {Eman Alzedani and Mohamed Mabrouk},
     title = {Maps {Preserving} the {Spectrum} of {Skew} {Lie} {Product} of {Operators}},
     journal = {Kragujevac Journal of Mathematics},
     pages = {525 },
     publisher = {mathdoc},
     volume = {46},
     number = {4},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2022_46_4_a1/}
}
TY  - JOUR
AU  - Eman Alzedani
AU  - Mohamed Mabrouk
TI  - Maps Preserving the Spectrum of Skew Lie Product of Operators
JO  - Kragujevac Journal of Mathematics
PY  - 2022
SP  - 525 
VL  - 46
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2022_46_4_a1/
LA  - en
ID  - KJM_2022_46_4_a1
ER  - 
%0 Journal Article
%A Eman Alzedani
%A Mohamed Mabrouk
%T Maps Preserving the Spectrum of Skew Lie Product of Operators
%J Kragujevac Journal of Mathematics
%D 2022
%P 525 
%V 46
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2022_46_4_a1/
%G en
%F KJM_2022_46_4_a1
Eman Alzedani; Mohamed Mabrouk. Maps Preserving the Spectrum of Skew Lie Product of Operators. Kragujevac Journal of Mathematics, Tome 46 (2022) no. 4, p. 525 . http://geodesic.mathdoc.fr/item/KJM_2022_46_4_a1/