Coefficient Estimates for Subclass of $m$-Fold Symmetric Bi-Univalent Functions
Kragujevac Journal of Mathematics, Tome 46 (2022) no. 3, p. 395
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In the present paper, a general subclass ${\mathcal{M}}_{{\Sigma}_m}^{h,p}(\lambda,\gamma)$ of the $m$-Fold symmetric bi-univalent functions is defined. Also, the estimates of the Taylor-Maclaurin coefficients $|a_{m+1}|$, $|a_{2m+1}|$ and Fekete-Szegö problems are obtained for functions in this new subclass. The results presented in this paper would generalize and improve some recent works of several earlier authors.
Classification :
30C45, 30C50
Keywords: bi-univalent functions, $m$-fold symmetric univalent functions, $m$-fold symmetric bi-univalent functions, coefficient estimates, Fekete-Szegö problem
Keywords: bi-univalent functions, $m$-fold symmetric univalent functions, $m$-fold symmetric bi-univalent functions, coefficient estimates, Fekete-Szegö problem
@article{KJM_2022_46_3_a4,
author = {A. Motamednezhad and S. Salehian and N. Magesh},
title = {Coefficient {Estimates} for {Subclass} of $m${-Fold} {Symmetric} {Bi-Univalent} {Functions}},
journal = {Kragujevac Journal of Mathematics},
pages = {395 },
year = {2022},
volume = {46},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2022_46_3_a4/}
}
TY - JOUR AU - A. Motamednezhad AU - S. Salehian AU - N. Magesh TI - Coefficient Estimates for Subclass of $m$-Fold Symmetric Bi-Univalent Functions JO - Kragujevac Journal of Mathematics PY - 2022 SP - 395 VL - 46 IS - 3 UR - http://geodesic.mathdoc.fr/item/KJM_2022_46_3_a4/ LA - en ID - KJM_2022_46_3_a4 ER -
A. Motamednezhad; S. Salehian; N. Magesh. Coefficient Estimates for Subclass of $m$-Fold Symmetric Bi-Univalent Functions. Kragujevac Journal of Mathematics, Tome 46 (2022) no. 3, p. 395 . http://geodesic.mathdoc.fr/item/KJM_2022_46_3_a4/