$A^{\mathcal I}$-Statistical Approximation of Continuous Functions by Sequence of Convolution Operators
Kragujevac Journal of Mathematics, Tome 46 (2022) no. 3, p. 355
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In this paper, following the concept of $A^\mathcal {I}$-statistical convergence for real sequences introduced by Savas et al. \cite{espdsd2}, we deal with Korovkin type approximation theory for a sequence of positive convolution operators defined on $C[a,b]$, the space of all real valued continuous functions on $[a,b]$, in the line of Duman \cite{duman3}. In the Section 3, we study the rate of $A^\mathcal {I}$-statistical convergence.
Classification :
40A35, 47B38, 41A25, 41A36
Keywords: ideal, $A^\mathcal I$-statistical convergence, positive linear operator, convolution operator, Korovkin type approximation theorem, rate of convergence
Keywords: ideal, $A^\mathcal I$-statistical convergence, positive linear operator, convolution operator, Korovkin type approximation theorem, rate of convergence
@article{KJM_2022_46_3_a1,
author = {Sudipta Dutta and Rima Ghosh},
title = {$A^{\mathcal I}${-Statistical} {Approximation} of {Continuous} {Functions} by {Sequence} of {Convolution} {Operators}},
journal = {Kragujevac Journal of Mathematics},
pages = {355 },
year = {2022},
volume = {46},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2022_46_3_a1/}
}
TY - JOUR
AU - Sudipta Dutta
AU - Rima Ghosh
TI - $A^{\mathcal I}$-Statistical Approximation of Continuous Functions by Sequence of Convolution Operators
JO - Kragujevac Journal of Mathematics
PY - 2022
SP - 355
VL - 46
IS - 3
UR - http://geodesic.mathdoc.fr/item/KJM_2022_46_3_a1/
LA - en
ID - KJM_2022_46_3_a1
ER -
Sudipta Dutta; Rima Ghosh. $A^{\mathcal I}$-Statistical Approximation of Continuous Functions by Sequence of Convolution Operators. Kragujevac Journal of Mathematics, Tome 46 (2022) no. 3, p. 355 . http://geodesic.mathdoc.fr/item/KJM_2022_46_3_a1/