$(m,n)$-Hyperfilters in Ordered Semihypergroups
Kragujevac Journal of Mathematics, Tome 46 (2022) no. 2, p. 307
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
First, we generalize concepts of left hyperfilters, right hyperfilters and hyperfilters of an ordered semihypergroup by introducing concepts of left-$m$-hyperfilters, right-$n$-hyperfilters and $(m,n)$-hyperfilters of an ordered semihypergroup. Then, some properties of these generalized hyperfilters have been studied. Finally, left-$m$-hyperfilters (resp. right-$n$-hyperfilters, $(m,n)$-hyperfilters) of $(m,0)$-regular (resp. $(0,n)$-regular, $(m,n)$-regular) ordered semihypergroups characterize in terms of their completely prime generalized $(m,0)$-hyperideals (resp. $(0,n)$-hyperideals, $(m,n)$-hyperideals).
Classification :
20N20
Keywords: Ordered semihypergroups, left-$m$-hyperfilters, right-$n$-hyperfilters, $(m;n)$-hyperfilters
Keywords: Ordered semihypergroups, left-$m$-hyperfilters, right-$n$-hyperfilters, $(m;n)$-hyperfilters
@article{KJM_2022_46_2_a9,
author = {Ahsan Mahboob and Noor Mohammad Khan},
title = {$(m,n)${-Hyperfilters} in {Ordered} {Semihypergroups}},
journal = {Kragujevac Journal of Mathematics},
pages = {307 },
publisher = {mathdoc},
volume = {46},
number = {2},
year = {2022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2022_46_2_a9/}
}
Ahsan Mahboob; Noor Mohammad Khan. $(m,n)$-Hyperfilters in Ordered Semihypergroups. Kragujevac Journal of Mathematics, Tome 46 (2022) no. 2, p. 307 . http://geodesic.mathdoc.fr/item/KJM_2022_46_2_a9/