$\alpha\beta$-Weighted $d_g$-Statistical Convergence in Probability
Kragujevac Journal of Mathematics, Tome 46 (2022) no. 2, p. 229
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In this paper we consider the notion of generalized density, namely, the natural density of weight $g$ was introduced by Balcerzak et al. (Acta Math. Hungar. {147}(1) (2015) 97-115) and the entire investigation is performed in the setting of probability space extending the recent results of Ghosal (Appl. Math. Comput. { 249} (2014) 502-509) and Das et al. (Filomat {31}(5) (2017) 1463-1473).
Classification :
40A35 40G15, 60B10
Keywords: $\alpha\beta$-weighted $d_g$-statistical convergence in probability, $\alpha\beta$-weighted $d_g$-strongly Cesàro convergence in probability, $g$-weighted $S_\alpha\beta$-convergence in probability, $g$-weighted $N_\alpha\beta$-convergence in probability
Keywords: $\alpha\beta$-weighted $d_g$-statistical convergence in probability, $\alpha\beta$-weighted $d_g$-strongly Cesàro convergence in probability, $g$-weighted $S_\alpha\beta$-convergence in probability, $g$-weighted $N_\alpha\beta$-convergence in probability
@article{KJM_2022_46_2_a3,
author = {Mandobi Banerjee},
title = {$\alpha\beta${-Weighted} $d_g${-Statistical} {Convergence} in {Probability}},
journal = {Kragujevac Journal of Mathematics},
pages = {229 },
year = {2022},
volume = {46},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2022_46_2_a3/}
}
Mandobi Banerjee. $\alpha\beta$-Weighted $d_g$-Statistical Convergence in Probability. Kragujevac Journal of Mathematics, Tome 46 (2022) no. 2, p. 229 . http://geodesic.mathdoc.fr/item/KJM_2022_46_2_a3/