$\alpha\beta$-Weighted $d_g$-Statistical Convergence in Probability
Kragujevac Journal of Mathematics, Tome 46 (2022) no. 2, p. 229 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In this paper we consider the notion of generalized density, namely, the natural density of weight $g$ was introduced by Balcerzak et al. (Acta Math. Hungar. {147}(1) (2015) 97-115) and the entire investigation is performed in the setting of probability space extending the recent results of Ghosal (Appl. Math. Comput. { 249} (2014) 502-509) and Das et al. (Filomat {31}(5) (2017) 1463-1473).
Classification : 40A35 40G15, 60B10
Keywords: $\alpha\beta$-weighted $d_g$-statistical convergence in probability, $\alpha\beta$-weighted $d_g$-strongly Cesàro convergence in probability, $g$-weighted $S_\alpha\beta$-convergence in probability, $g$-weighted $N_\alpha\beta$-convergence in probability
@article{KJM_2022_46_2_a3,
     author = {Mandobi Banerjee},
     title = {$\alpha\beta${-Weighted} $d_g${-Statistical} {Convergence} in {Probability}},
     journal = {Kragujevac Journal of Mathematics},
     pages = {229 },
     publisher = {mathdoc},
     volume = {46},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2022_46_2_a3/}
}
TY  - JOUR
AU  - Mandobi Banerjee
TI  - $\alpha\beta$-Weighted $d_g$-Statistical Convergence in Probability
JO  - Kragujevac Journal of Mathematics
PY  - 2022
SP  - 229 
VL  - 46
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2022_46_2_a3/
LA  - en
ID  - KJM_2022_46_2_a3
ER  - 
%0 Journal Article
%A Mandobi Banerjee
%T $\alpha\beta$-Weighted $d_g$-Statistical Convergence in Probability
%J Kragujevac Journal of Mathematics
%D 2022
%P 229 
%V 46
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2022_46_2_a3/
%G en
%F KJM_2022_46_2_a3
Mandobi Banerjee. $\alpha\beta$-Weighted $d_g$-Statistical Convergence in Probability. Kragujevac Journal of Mathematics, Tome 46 (2022) no. 2, p. 229 . http://geodesic.mathdoc.fr/item/KJM_2022_46_2_a3/