General Classes of Shrinkage Estimators for the Multivariate Normal Mean with Unknown Variance: Minimaxity and Limit of Risks Ratios
Kragujevac Journal of Mathematics, Tome 46 (2022) no. 2, p. 193
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In this paper, we consider two forms of shrinkage estimators of the mean $\theta$ of a multivariate normal distribution $X \sim $ $N_{p}\left(\theta, \sigma^{2}I_{p}\right)$ in $\mathbb{R}^{p}$ where $\sigma^{2}$ is unknown and estimated by the statistic $S^{2}$ ($S^{2}\sim \sigma^{2}\chi_{n}^{2}$). Estimators that shrink the components of the usual estimator $X$ to zero and estimators of Lindley-type, that shrink the components of the usual estimator to the random variable $\overline{X}.$ Our aim is to improve under appropriate condition the results related to risks ratios of shrinkage estimators, when $n$ and $p$ tend to infinity and to ameliorate the results of minimaxity obtained previously of estimators cited above, when the dimension $p$ is finite. Some numerical results are also provided.
Classification :
62F12 62C20
Keywords: James-Stein estimator, multivariate Gaussian random variable, non-central chi-square distribution, quadratic risk, shrinkage estimator
Keywords: James-Stein estimator, multivariate Gaussian random variable, non-central chi-square distribution, quadratic risk, shrinkage estimator
@article{KJM_2022_46_2_a1,
author = {Abdelkader Benkhaled and Abdenour Hamdaoui},
title = {General {Classes} of {Shrinkage} {Estimators} for the {Multivariate} {Normal} {Mean} with {Unknown} {Variance:} {Minimaxity} and {Limit} of {Risks} {Ratios}},
journal = {Kragujevac Journal of Mathematics},
pages = {193 },
year = {2022},
volume = {46},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2022_46_2_a1/}
}
TY - JOUR AU - Abdelkader Benkhaled AU - Abdenour Hamdaoui TI - General Classes of Shrinkage Estimators for the Multivariate Normal Mean with Unknown Variance: Minimaxity and Limit of Risks Ratios JO - Kragujevac Journal of Mathematics PY - 2022 SP - 193 VL - 46 IS - 2 UR - http://geodesic.mathdoc.fr/item/KJM_2022_46_2_a1/ LA - en ID - KJM_2022_46_2_a1 ER -
%0 Journal Article %A Abdelkader Benkhaled %A Abdenour Hamdaoui %T General Classes of Shrinkage Estimators for the Multivariate Normal Mean with Unknown Variance: Minimaxity and Limit of Risks Ratios %J Kragujevac Journal of Mathematics %D 2022 %P 193 %V 46 %N 2 %U http://geodesic.mathdoc.fr/item/KJM_2022_46_2_a1/ %G en %F KJM_2022_46_2_a1
Abdelkader Benkhaled; Abdenour Hamdaoui. General Classes of Shrinkage Estimators for the Multivariate Normal Mean with Unknown Variance: Minimaxity and Limit of Risks Ratios. Kragujevac Journal of Mathematics, Tome 46 (2022) no. 2, p. 193 . http://geodesic.mathdoc.fr/item/KJM_2022_46_2_a1/