Connectedness of the Cut System Complex on Nonorientable Surfaces
Kragujevac Journal of Mathematics, Tome 46 (2022) no. 1, p. 21 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $N$ be a compact, connected, nonorientable surface of genus $g$ with $n$ boundary components. In this note, we show that the cut system complex of $N$ is connected for $g 4$ and disconnected for $g \geq 4$. We then define a related complex and show that it is connected for $g \geq 4$.
Classification : 57N05, 57M99, 05C40
Keywords: a nonorientable surface, cut system complex
@article{KJM_2022_46_1_a1,
     author = {Fatema Ali and Ferihe Atalan},
     title = {Connectedness of the {Cut} {System} {Complex} on {Nonorientable} {Surfaces}},
     journal = {Kragujevac Journal of Mathematics},
     pages = {21 },
     publisher = {mathdoc},
     volume = {46},
     number = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2022_46_1_a1/}
}
TY  - JOUR
AU  - Fatema Ali
AU  - Ferihe Atalan
TI  - Connectedness of the Cut System Complex on Nonorientable Surfaces
JO  - Kragujevac Journal of Mathematics
PY  - 2022
SP  - 21 
VL  - 46
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2022_46_1_a1/
LA  - en
ID  - KJM_2022_46_1_a1
ER  - 
%0 Journal Article
%A Fatema Ali
%A Ferihe Atalan
%T Connectedness of the Cut System Complex on Nonorientable Surfaces
%J Kragujevac Journal of Mathematics
%D 2022
%P 21 
%V 46
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2022_46_1_a1/
%G en
%F KJM_2022_46_1_a1
Fatema Ali; Ferihe Atalan. Connectedness of the Cut System Complex on Nonorientable Surfaces. Kragujevac Journal of Mathematics, Tome 46 (2022) no. 1, p. 21 . http://geodesic.mathdoc.fr/item/KJM_2022_46_1_a1/