Connectedness of the Cut System Complex on Nonorientable Surfaces
Kragujevac Journal of Mathematics, Tome 46 (2022) no. 1, p. 21

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $N$ be a compact, connected, nonorientable surface of genus $g$ with $n$ boundary components. In this note, we show that the cut system complex of $N$ is connected for $g 4$ and disconnected for $g \geq 4$. We then define a related complex and show that it is connected for $g \geq 4$.
Classification : 57N05, 57M99, 05C40
Keywords: a nonorientable surface, cut system complex
@article{KJM_2022_46_1_a1,
     author = {Fatema Ali and Ferihe Atalan},
     title = {Connectedness of the {Cut} {System} {Complex} on {Nonorientable} {Surfaces}},
     journal = {Kragujevac Journal of Mathematics},
     pages = {21 },
     publisher = {mathdoc},
     volume = {46},
     number = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2022_46_1_a1/}
}
TY  - JOUR
AU  - Fatema Ali
AU  - Ferihe Atalan
TI  - Connectedness of the Cut System Complex on Nonorientable Surfaces
JO  - Kragujevac Journal of Mathematics
PY  - 2022
SP  - 21 
VL  - 46
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2022_46_1_a1/
LA  - en
ID  - KJM_2022_46_1_a1
ER  - 
%0 Journal Article
%A Fatema Ali
%A Ferihe Atalan
%T Connectedness of the Cut System Complex on Nonorientable Surfaces
%J Kragujevac Journal of Mathematics
%D 2022
%P 21 
%V 46
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2022_46_1_a1/
%G en
%F KJM_2022_46_1_a1
Fatema Ali; Ferihe Atalan. Connectedness of the Cut System Complex on Nonorientable Surfaces. Kragujevac Journal of Mathematics, Tome 46 (2022) no. 1, p. 21 . http://geodesic.mathdoc.fr/item/KJM_2022_46_1_a1/