Geometric Invariants Under the Möbius Action of the Group $SL(2;\mathbb R)$
Kragujevac Journal of Mathematics, Tome 45 (2021) no. 6, p. 925 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In this paper we have introduced new invariant geometric objects in the homogeneous spaces of complex, dual and double numbers for the principal group $SL(2;\mathbb{R})$, in the Klein's Erlangen Program. We have considered the action as the Möbius action and have taken the spaces as the spaces of complex, dual and double numbers. Some new decompositions of $SL(2;\mathbb{R})$ have been used.
Classification : 57S20, 57S25, 51H20, 14R20, 22F30, 54H11
Keywords: Lie group, $SL(2;\mathbb R)$ group, invariants, Möbius transformation, homogeneous spaces, Iwasawa decomposition
@article{KJM_2021_45_6_a6,
     author = {Debapriya Biswas and Sandipan Dutta},
     title = {Geometric {Invariants} {Under} the {M\"obius} {Action} of the {Group} $SL(2;\mathbb R)$},
     journal = {Kragujevac Journal of Mathematics},
     pages = {925 },
     publisher = {mathdoc},
     volume = {45},
     number = {6},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2021_45_6_a6/}
}
TY  - JOUR
AU  - Debapriya Biswas
AU  - Sandipan Dutta
TI  - Geometric Invariants Under the Möbius Action of the Group $SL(2;\mathbb R)$
JO  - Kragujevac Journal of Mathematics
PY  - 2021
SP  - 925 
VL  - 45
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2021_45_6_a6/
LA  - en
ID  - KJM_2021_45_6_a6
ER  - 
%0 Journal Article
%A Debapriya Biswas
%A Sandipan Dutta
%T Geometric Invariants Under the Möbius Action of the Group $SL(2;\mathbb R)$
%J Kragujevac Journal of Mathematics
%D 2021
%P 925 
%V 45
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2021_45_6_a6/
%G en
%F KJM_2021_45_6_a6
Debapriya Biswas; Sandipan Dutta. Geometric Invariants Under the Möbius Action of the Group $SL(2;\mathbb R)$. Kragujevac Journal of Mathematics, Tome 45 (2021) no. 6, p. 925 . http://geodesic.mathdoc.fr/item/KJM_2021_45_6_a6/