Application of the Hopf Maximum Principle to the Theory of Geodesic Mappings
Kragujevac Journal of Mathematics, Tome 45 (2021) no. 5, p. 781
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In the present paper we consider some applications the Hopf maximum principle and its generalization to the classical theory of geodesic mappings. As a result, a series of classical theorems on geodesic mappings become consequences of our statements which we shall prove in the present paper.
Classification :
53C20, 53B20 53C21, 53C24
Keywords: Riemannian manifold, Einstein manifold, geodesic mapping, second order elliptic differential operator on symmetric tensors, Hopf maximum principle, vanishing theorems
Keywords: Riemannian manifold, Einstein manifold, geodesic mapping, second order elliptic differential operator on symmetric tensors, Hopf maximum principle, vanishing theorems
@article{KJM_2021_45_5_a8,
author = {Sergey Stepanov and Josef Mike\v{s}},
title = {Application of the {Hopf} {Maximum} {Principle} to the {Theory} of {Geodesic} {Mappings}},
journal = {Kragujevac Journal of Mathematics},
pages = {781 },
publisher = {mathdoc},
volume = {45},
number = {5},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2021_45_5_a8/}
}
TY - JOUR AU - Sergey Stepanov AU - Josef Mikeš TI - Application of the Hopf Maximum Principle to the Theory of Geodesic Mappings JO - Kragujevac Journal of Mathematics PY - 2021 SP - 781 VL - 45 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/KJM_2021_45_5_a8/ LA - en ID - KJM_2021_45_5_a8 ER -
Sergey Stepanov; Josef Mikeš. Application of the Hopf Maximum Principle to the Theory of Geodesic Mappings. Kragujevac Journal of Mathematics, Tome 45 (2021) no. 5, p. 781 . http://geodesic.mathdoc.fr/item/KJM_2021_45_5_a8/