On $n$-Absorbing Ideals in a Lattice
Kragujevac Journal of Mathematics, Tome 45 (2021) no. 4, p. 597

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $L$ be a lattice, and let $n$ be a positive integer. In this article, we introduce $n$-absorbing ideals in $L$. We give some properties of such ideals. We show that every $n$-absorbing ideal $I$ of $L$ has at most $n$ minimal prime ideals. Also, we give some properties of $2$-absorbing and weakly $2$-absorbing ideals in $L$. In particular we show that in every non-zero distributive lattice $L$, $2$-absorbing and weakly $2$-absorbing ideals are equivalent.
Classification : 03G10, 03G99
Keywords: lattice, minimal ideal, $2$-absorbing ideal, $n$-absorbing ideal
@article{KJM_2021_45_4_a6,
     author = {Ali Akbar Estaji and Toktam Haghdadi},
     title = {On $n${-Absorbing} {Ideals} in a {Lattice}},
     journal = {Kragujevac Journal of Mathematics},
     pages = {597 },
     publisher = {mathdoc},
     volume = {45},
     number = {4},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2021_45_4_a6/}
}
TY  - JOUR
AU  - Ali Akbar Estaji
AU  - Toktam Haghdadi
TI  - On $n$-Absorbing Ideals in a Lattice
JO  - Kragujevac Journal of Mathematics
PY  - 2021
SP  - 597 
VL  - 45
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2021_45_4_a6/
LA  - en
ID  - KJM_2021_45_4_a6
ER  - 
%0 Journal Article
%A Ali Akbar Estaji
%A Toktam Haghdadi
%T On $n$-Absorbing Ideals in a Lattice
%J Kragujevac Journal of Mathematics
%D 2021
%P 597 
%V 45
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2021_45_4_a6/
%G en
%F KJM_2021_45_4_a6
Ali Akbar Estaji; Toktam Haghdadi. On $n$-Absorbing Ideals in a Lattice. Kragujevac Journal of Mathematics, Tome 45 (2021) no. 4, p. 597 . http://geodesic.mathdoc.fr/item/KJM_2021_45_4_a6/