On $n$-Absorbing Ideals in a Lattice
Kragujevac Journal of Mathematics, Tome 45 (2021) no. 4, p. 597 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $L$ be a lattice, and let $n$ be a positive integer. In this article, we introduce $n$-absorbing ideals in $L$. We give some properties of such ideals. We show that every $n$-absorbing ideal $I$ of $L$ has at most $n$ minimal prime ideals. Also, we give some properties of $2$-absorbing and weakly $2$-absorbing ideals in $L$. In particular we show that in every non-zero distributive lattice $L$, $2$-absorbing and weakly $2$-absorbing ideals are equivalent.
Classification : 03G10, 03G99
Keywords: lattice, minimal ideal, $2$-absorbing ideal, $n$-absorbing ideal
@article{KJM_2021_45_4_a6,
     author = {Ali Akbar Estaji and Toktam Haghdadi},
     title = {On $n${-Absorbing} {Ideals} in a {Lattice}},
     journal = {Kragujevac Journal of Mathematics},
     pages = {597 },
     publisher = {mathdoc},
     volume = {45},
     number = {4},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2021_45_4_a6/}
}
TY  - JOUR
AU  - Ali Akbar Estaji
AU  - Toktam Haghdadi
TI  - On $n$-Absorbing Ideals in a Lattice
JO  - Kragujevac Journal of Mathematics
PY  - 2021
SP  - 597 
VL  - 45
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2021_45_4_a6/
LA  - en
ID  - KJM_2021_45_4_a6
ER  - 
%0 Journal Article
%A Ali Akbar Estaji
%A Toktam Haghdadi
%T On $n$-Absorbing Ideals in a Lattice
%J Kragujevac Journal of Mathematics
%D 2021
%P 597 
%V 45
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2021_45_4_a6/
%G en
%F KJM_2021_45_4_a6
Ali Akbar Estaji; Toktam Haghdadi. On $n$-Absorbing Ideals in a Lattice. Kragujevac Journal of Mathematics, Tome 45 (2021) no. 4, p. 597 . http://geodesic.mathdoc.fr/item/KJM_2021_45_4_a6/