On $n$-Absorbing Ideals in a Lattice
Kragujevac Journal of Mathematics, Tome 45 (2021) no. 4, p. 597
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Let $L$ be a lattice, and let $n$ be a positive integer. In this article, we introduce $n$-absorbing ideals in $L$. We give some properties of such ideals. We show that every $n$-absorbing ideal $I$ of $L$ has at most $n$ minimal prime ideals. Also, we give some properties of $2$-absorbing and weakly $2$-absorbing ideals in $L$. In particular we show that in every non-zero distributive lattice $L$, $2$-absorbing and weakly $2$-absorbing ideals are equivalent.
Classification :
03G10, 03G99
Keywords: lattice, minimal ideal, $2$-absorbing ideal, $n$-absorbing ideal
Keywords: lattice, minimal ideal, $2$-absorbing ideal, $n$-absorbing ideal
@article{KJM_2021_45_4_a6,
author = {Ali Akbar Estaji and Toktam Haghdadi},
title = {On $n${-Absorbing} {Ideals} in a {Lattice}},
journal = {Kragujevac Journal of Mathematics},
pages = {597 },
publisher = {mathdoc},
volume = {45},
number = {4},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2021_45_4_a6/}
}
Ali Akbar Estaji; Toktam Haghdadi. On $n$-Absorbing Ideals in a Lattice. Kragujevac Journal of Mathematics, Tome 45 (2021) no. 4, p. 597 . http://geodesic.mathdoc.fr/item/KJM_2021_45_4_a6/