The Maximum Norm Analysis of Schwarz Method for Elliptic Quasi-Variational Inequalities
Kragujevac Journal of Mathematics, Tome 45 (2021) no. 4, p. 635

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In this paper, we present a maximum norm analysis of an overlapping Schwartz method on non matching grids for a quasi-variational inequality, where the obstacle and the second member depend on the solution. Our result improves and generalizes some previous results.
Classification : 05C38, 15A15, 05A15, 15A18
Keywords: Schwarz method, quasi-variational inequalities, weakly subsequenti ally continuous, $L^{\infty}$-error estimates
@article{KJM_2021_45_4_a10,
     author = {Mohammed Beggas and Mohammed Haiour},
     title = {The {Maximum} {Norm} {Analysis} of {Schwarz} {Method} for {Elliptic} {Quasi-Variational} {Inequalities}},
     journal = {Kragujevac Journal of Mathematics},
     pages = {635 },
     publisher = {mathdoc},
     volume = {45},
     number = {4},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2021_45_4_a10/}
}
TY  - JOUR
AU  - Mohammed Beggas
AU  - Mohammed Haiour
TI  - The Maximum Norm Analysis of Schwarz Method for Elliptic Quasi-Variational Inequalities
JO  - Kragujevac Journal of Mathematics
PY  - 2021
SP  - 635 
VL  - 45
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2021_45_4_a10/
LA  - en
ID  - KJM_2021_45_4_a10
ER  - 
%0 Journal Article
%A Mohammed Beggas
%A Mohammed Haiour
%T The Maximum Norm Analysis of Schwarz Method for Elliptic Quasi-Variational Inequalities
%J Kragujevac Journal of Mathematics
%D 2021
%P 635 
%V 45
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2021_45_4_a10/
%G en
%F KJM_2021_45_4_a10
Mohammed Beggas; Mohammed Haiour. The Maximum Norm Analysis of Schwarz Method for Elliptic Quasi-Variational Inequalities. Kragujevac Journal of Mathematics, Tome 45 (2021) no. 4, p. 635 . http://geodesic.mathdoc.fr/item/KJM_2021_45_4_a10/