The Maximum Norm Analysis of Schwarz Method for Elliptic Quasi-Variational Inequalities
Kragujevac Journal of Mathematics, Tome 45 (2021) no. 4, p. 635
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In this paper, we present a maximum norm analysis of an overlapping Schwartz method on non matching grids for a quasi-variational inequality, where the obstacle and the second member depend on the solution. Our result improves and generalizes some previous results.
Classification :
05C38, 15A15, 05A15, 15A18
Keywords: Schwarz method, quasi-variational inequalities, weakly subsequenti ally continuous, $L^{\infty}$-error estimates
Keywords: Schwarz method, quasi-variational inequalities, weakly subsequenti ally continuous, $L^{\infty}$-error estimates
@article{KJM_2021_45_4_a10,
author = {Mohammed Beggas and Mohammed Haiour},
title = {The {Maximum} {Norm} {Analysis} of {Schwarz} {Method} for {Elliptic} {Quasi-Variational} {Inequalities}},
journal = {Kragujevac Journal of Mathematics},
pages = {635 },
year = {2021},
volume = {45},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2021_45_4_a10/}
}
TY - JOUR AU - Mohammed Beggas AU - Mohammed Haiour TI - The Maximum Norm Analysis of Schwarz Method for Elliptic Quasi-Variational Inequalities JO - Kragujevac Journal of Mathematics PY - 2021 SP - 635 VL - 45 IS - 4 UR - http://geodesic.mathdoc.fr/item/KJM_2021_45_4_a10/ LA - en ID - KJM_2021_45_4_a10 ER -
Mohammed Beggas; Mohammed Haiour. The Maximum Norm Analysis of Schwarz Method for Elliptic Quasi-Variational Inequalities. Kragujevac Journal of Mathematics, Tome 45 (2021) no. 4, p. 635 . http://geodesic.mathdoc.fr/item/KJM_2021_45_4_a10/