New Generalized Apostol-Frobenius-Euler polynomials and their Matrix Approach
Kragujevac Journal of Mathematics, Tome 45 (2021) no. 3, p. 393
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In this paper, we introduce a new extension of the generalized Apostol-Frobenius-Euler polynomials $\mathcal{H}_n^{[m-1,\alpha]}(x;c,a;\lambda;u)$. We give some algebraic and differential properties, as well as, relationships between this polynomials class with other polynomials and numbers. We also, introduce the generalized Apostol-Frobenius-Euler polynomials matrix $\mathcal{U}^{[m-1,\alpha]}(x;c,a;\lambda;u)$ and the new generalized Apostol-Frobenius-Euler matrix $\mathcal{U}^{[m-1,\alpha]}(c,a;\lambda;u)$, we deduce a product formula for $\mathcal{U}^{[m-1,\alpha]}(x;c,a;\lambda;u)$ and provide some factorizations of the Apostol-Frobenius-Euler polynomial matrix $\mathcal{U}^{[m-1,\alpha]}(x;c,a;\lambda;u)$, which involving the generalized Pascalinebreak matrix.
Classification :
33E12 30H50
Keywords: Generalized Apostol-type polynomials, Apostol-Frobennius-Euler polynomials, Apostol-Bernoulli polynomials of higher order, Apostol-Genocchi polynomials of higher order, Stirling numbers of second kind, generalized Pascal matrix
Keywords: Generalized Apostol-type polynomials, Apostol-Frobennius-Euler polynomials, Apostol-Bernoulli polynomials of higher order, Apostol-Genocchi polynomials of higher order, Stirling numbers of second kind, generalized Pascal matrix
@article{KJM_2021_45_3_a5,
author = {Mar{\'\i}a Jos\'e Ortega and William Ram{\'\i}rez and Alejandro Urieles},
title = {New {Generalized} {Apostol-Frobenius-Euler} polynomials and their {Matrix} {Approach}},
journal = {Kragujevac Journal of Mathematics},
pages = {393 },
publisher = {mathdoc},
volume = {45},
number = {3},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2021_45_3_a5/}
}
TY - JOUR AU - María José Ortega AU - William Ramírez AU - Alejandro Urieles TI - New Generalized Apostol-Frobenius-Euler polynomials and their Matrix Approach JO - Kragujevac Journal of Mathematics PY - 2021 SP - 393 VL - 45 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/KJM_2021_45_3_a5/ LA - en ID - KJM_2021_45_3_a5 ER -
%0 Journal Article %A María José Ortega %A William Ramírez %A Alejandro Urieles %T New Generalized Apostol-Frobenius-Euler polynomials and their Matrix Approach %J Kragujevac Journal of Mathematics %D 2021 %P 393 %V 45 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/KJM_2021_45_3_a5/ %G en %F KJM_2021_45_3_a5
María José Ortega; William Ramírez; Alejandro Urieles. New Generalized Apostol-Frobenius-Euler polynomials and their Matrix Approach. Kragujevac Journal of Mathematics, Tome 45 (2021) no. 3, p. 393 . http://geodesic.mathdoc.fr/item/KJM_2021_45_3_a5/