New Generalized Apostol-Frobenius-Euler polynomials and their Matrix Approach
Kragujevac Journal of Mathematics, Tome 45 (2021) no. 3, p. 393
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In this paper, we introduce a new extension of the generalized Apostol-Frobenius-Euler polynomials $\mathcal{H}_n^{[m-1,\alpha]}(x;c,a;\lambda;u)$. We give some algebraic and differential properties, as well as, relationships between this polynomials class with other polynomials and numbers. We also, introduce the generalized Apostol-Frobenius-Euler polynomials matrix $\mathcal{U}^{[m-1,\alpha]}(x;c,a;\lambda;u)$ and the new generalized Apostol-Frobenius-Euler matrix $\mathcal{U}^{[m-1,\alpha]}(c,a;\lambda;u)$, we deduce a product formula for $\mathcal{U}^{[m-1,\alpha]}(x;c,a;\lambda;u)$ and provide some factorizations of the Apostol-Frobenius-Euler polynomial matrix $\mathcal{U}^{[m-1,\alpha]}(x;c,a;\lambda;u)$, which involving the generalized Pascalinebreak matrix.
Classification :
33E12 30H50
Keywords: Generalized Apostol-type polynomials, Apostol-Frobennius-Euler polynomials, Apostol-Bernoulli polynomials of higher order, Apostol-Genocchi polynomials of higher order, Stirling numbers of second kind, generalized Pascal matrix
Keywords: Generalized Apostol-type polynomials, Apostol-Frobennius-Euler polynomials, Apostol-Bernoulli polynomials of higher order, Apostol-Genocchi polynomials of higher order, Stirling numbers of second kind, generalized Pascal matrix
@article{KJM_2021_45_3_a5,
author = {Mar{\'\i}a Jos\'e Ortega and William Ram{\'\i}rez and Alejandro Urieles},
title = {New {Generalized} {Apostol-Frobenius-Euler} polynomials and their {Matrix} {Approach}},
journal = {Kragujevac Journal of Mathematics},
pages = {393 },
year = {2021},
volume = {45},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2021_45_3_a5/}
}
TY - JOUR AU - María José Ortega AU - William Ramírez AU - Alejandro Urieles TI - New Generalized Apostol-Frobenius-Euler polynomials and their Matrix Approach JO - Kragujevac Journal of Mathematics PY - 2021 SP - 393 VL - 45 IS - 3 UR - http://geodesic.mathdoc.fr/item/KJM_2021_45_3_a5/ LA - en ID - KJM_2021_45_3_a5 ER -
%0 Journal Article %A María José Ortega %A William Ramírez %A Alejandro Urieles %T New Generalized Apostol-Frobenius-Euler polynomials and their Matrix Approach %J Kragujevac Journal of Mathematics %D 2021 %P 393 %V 45 %N 3 %U http://geodesic.mathdoc.fr/item/KJM_2021_45_3_a5/ %G en %F KJM_2021_45_3_a5
María José Ortega; William Ramírez; Alejandro Urieles. New Generalized Apostol-Frobenius-Euler polynomials and their Matrix Approach. Kragujevac Journal of Mathematics, Tome 45 (2021) no. 3, p. 393 . http://geodesic.mathdoc.fr/item/KJM_2021_45_3_a5/