Some Remarks on Differential Identities in Rings
Kragujevac Journal of Mathematics, Tome 45 (2021) no. 2, p. 259
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Let $1$ and $m,k\in \mathbb{Z}^+$. In this manuscript, we analyse the action of (semi)-prime rings satisfying certain differential identities on some suitable subset of rings. To be more specific, we discuss the behaviour of the semiprime ring $\mathcal{R}$ satisfying the differential identities $([d([s,t]_m),[s,t]_m])^k=[d([s,t]_m),[s,t]_m]$ for every $s,t\in \mathcal{R}$.
Classification :
16W25 16N60, 16U80
Keywords: (semi)-prime ring, derivation, Engel polynomial, maximal right ring of quotients, generalized polynomial identity (GPI)
Keywords: (semi)-prime ring, derivation, Engel polynomial, maximal right ring of quotients, generalized polynomial identity (GPI)
@article{KJM_2021_45_2_a7,
author = {Mohd Arif Raza and Husain Alhazmi and Shakir Ali},
title = {Some {Remarks} on {Differential} {Identities} in {Rings}},
journal = {Kragujevac Journal of Mathematics},
pages = {259 },
year = {2021},
volume = {45},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2021_45_2_a7/}
}
Mohd Arif Raza; Husain Alhazmi; Shakir Ali. Some Remarks on Differential Identities in Rings. Kragujevac Journal of Mathematics, Tome 45 (2021) no. 2, p. 259 . http://geodesic.mathdoc.fr/item/KJM_2021_45_2_a7/