Some Refinements of the Numerical Radius Inequalities via Young Inequality
Kragujevac Journal of Mathematics, Tome 45 (2021) no. 2, p. 191 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In this paper, we get an improvement of the Hölder-McCarthy operator inequality in the case when $r\geq 1$ and refine generalized inequalities involving powers of the numerical radius for sums and products of Hilbert space operators.
Classification : 47A12, 47A30 47A63
Keywords: bounded linear operator, Hilbert space, norm inequality, numerical radius inequality
@article{KJM_2021_45_2_a2,
     author = {Z. Heydarbeygi and M. Amyari},
     title = {Some {Refinements} of the {Numerical} {Radius} {Inequalities} via {Young} {Inequality}},
     journal = {Kragujevac Journal of Mathematics},
     pages = {191 },
     publisher = {mathdoc},
     volume = {45},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2021_45_2_a2/}
}
TY  - JOUR
AU  - Z. Heydarbeygi
AU  - M. Amyari
TI  - Some Refinements of the Numerical Radius Inequalities via Young Inequality
JO  - Kragujevac Journal of Mathematics
PY  - 2021
SP  - 191 
VL  - 45
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2021_45_2_a2/
LA  - en
ID  - KJM_2021_45_2_a2
ER  - 
%0 Journal Article
%A Z. Heydarbeygi
%A M. Amyari
%T Some Refinements of the Numerical Radius Inequalities via Young Inequality
%J Kragujevac Journal of Mathematics
%D 2021
%P 191 
%V 45
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2021_45_2_a2/
%G en
%F KJM_2021_45_2_a2
Z. Heydarbeygi; M. Amyari. Some Refinements of the Numerical Radius Inequalities via Young Inequality. Kragujevac Journal of Mathematics, Tome 45 (2021) no. 2, p. 191 . http://geodesic.mathdoc.fr/item/KJM_2021_45_2_a2/