Some Refinements of the Numerical Radius Inequalities via Young Inequality
Kragujevac Journal of Mathematics, Tome 45 (2021) no. 2, p. 191
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In this paper, we get an improvement of the Hölder-McCarthy operator inequality in the case when $r\geq 1$ and refine generalized inequalities involving powers of the numerical radius for sums and products of Hilbert space operators.
Classification :
47A12, 47A30 47A63
Keywords: bounded linear operator, Hilbert space, norm inequality, numerical radius inequality
Keywords: bounded linear operator, Hilbert space, norm inequality, numerical radius inequality
@article{KJM_2021_45_2_a2,
author = {Z. Heydarbeygi and M. Amyari},
title = {Some {Refinements} of the {Numerical} {Radius} {Inequalities} via {Young} {Inequality}},
journal = {Kragujevac Journal of Mathematics},
pages = {191 },
year = {2021},
volume = {45},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2021_45_2_a2/}
}
Z. Heydarbeygi; M. Amyari. Some Refinements of the Numerical Radius Inequalities via Young Inequality. Kragujevac Journal of Mathematics, Tome 45 (2021) no. 2, p. 191 . http://geodesic.mathdoc.fr/item/KJM_2021_45_2_a2/