On the Harmonic Index and the Signless Laplacian Spectral Radius of Graphs
Kragujevac Journal of Mathematics, Tome 45 (2021) no. 2, p. 299 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

The harmonic index of a conected graph $G$ is defined as $H(G) =\linebreak \sum_{uv\in E(G)} \frac{2}{d(u) + d(v)}$, where $E(G)$ is the edge set of $G$, $d(u)$ and $d(v)$ are the degrees of vertices $u$ and $v$, respectively. The spectral radius of a square matrix $M$ is the maximum among the absolute values of the eigenvalues of $M$. Let $q(G)$ be the spectral radius of the signless Laplacian matrix $Q(G) = D(G) + A(G)$, where $D(G)$ is the diagonal matrix having degrees of the vertices on the main diagonal and $A(G)$ is the $(0, 1)$ adjacency matrix of $G$. The harmonic index of a graph $G$ and the spectral radius of the matrix $Q(G)$ have been extensively studied. We investigate the relationship between the harmonic index of a graph $G$ and the spectral radius of the matrix $Q(G)$. We prove that for a connected graph $G$ with $n$ vertices, we have $\frac{q(G)}{H(G)}e eft\{\begin{array}{ll} \dfrac{n^2}{2(n-1)}, \mbox{if } n\ge 6,[3mm] \dfrac{16}{5}, \mbox{if } n=5,[3mm] 3, \mbox{if } n=4, \end{array} \right.$ and the bounds are best possible.
Classification : 05C50 05C35
Keywords: harmonic index, spectral radius, eigenvalue, signless Laplacian matrix
@article{KJM_2021_45_2_a11,
     author = {Hanyuan Deng and Tom\'a\v{s} Vetr{\'\i}k and Selvaraj Balachandran},
     title = {On the {Harmonic} {Index} and the {Signless} {Laplacian} {Spectral} {Radius} of {Graphs}},
     journal = {Kragujevac Journal of Mathematics},
     pages = {299 },
     publisher = {mathdoc},
     volume = {45},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2021_45_2_a11/}
}
TY  - JOUR
AU  - Hanyuan Deng
AU  - Tomáš Vetrík
AU  - Selvaraj Balachandran
TI  - On the Harmonic Index and the Signless Laplacian Spectral Radius of Graphs
JO  - Kragujevac Journal of Mathematics
PY  - 2021
SP  - 299 
VL  - 45
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2021_45_2_a11/
LA  - en
ID  - KJM_2021_45_2_a11
ER  - 
%0 Journal Article
%A Hanyuan Deng
%A Tomáš Vetrík
%A Selvaraj Balachandran
%T On the Harmonic Index and the Signless Laplacian Spectral Radius of Graphs
%J Kragujevac Journal of Mathematics
%D 2021
%P 299 
%V 45
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2021_45_2_a11/
%G en
%F KJM_2021_45_2_a11
Hanyuan Deng; Tomáš Vetrík; Selvaraj Balachandran. On the Harmonic Index and the Signless Laplacian Spectral Radius of Graphs. Kragujevac Journal of Mathematics, Tome 45 (2021) no. 2, p. 299 . http://geodesic.mathdoc.fr/item/KJM_2021_45_2_a11/