On the Harmonic Index and the Signless Laplacian Spectral Radius of Graphs
Kragujevac Journal of Mathematics, Tome 45 (2021) no. 2, p. 299

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

The harmonic index of a conected graph $G$ is defined as $H(G) =\linebreak \sum_{uv\in E(G)} \frac{2}{d(u) + d(v)}$, where $E(G)$ is the edge set of $G$, $d(u)$ and $d(v)$ are the degrees of vertices $u$ and $v$, respectively. The spectral radius of a square matrix $M$ is the maximum among the absolute values of the eigenvalues of $M$. Let $q(G)$ be the spectral radius of the signless Laplacian matrix $Q(G) = D(G) + A(G)$, where $D(G)$ is the diagonal matrix having degrees of the vertices on the main diagonal and $A(G)$ is the $(0, 1)$ adjacency matrix of $G$. The harmonic index of a graph $G$ and the spectral radius of the matrix $Q(G)$ have been extensively studied. We investigate the relationship between the harmonic index of a graph $G$ and the spectral radius of the matrix $Q(G)$. We prove that for a connected graph $G$ with $n$ vertices, we have $\frac{q(G)}{H(G)}e eft\{\begin{array}{ll} \dfrac{n^2}{2(n-1)}, \mbox{if } n\ge 6,[3mm] \dfrac{16}{5}, \mbox{if } n=5,[3mm] 3, \mbox{if } n=4, \end{array} \right.$ and the bounds are best possible.
Classification : 05C50 05C35
Keywords: harmonic index, spectral radius, eigenvalue, signless Laplacian matrix
@article{KJM_2021_45_2_a11,
     author = {Hanyuan Deng and Tom\'a\v{s} Vetr{\'\i}k and Selvaraj Balachandran},
     title = {On the {Harmonic} {Index} and the {Signless} {Laplacian} {Spectral} {Radius} of {Graphs}},
     journal = {Kragujevac Journal of Mathematics},
     pages = {299 },
     publisher = {mathdoc},
     volume = {45},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2021_45_2_a11/}
}
TY  - JOUR
AU  - Hanyuan Deng
AU  - Tomáš Vetrík
AU  - Selvaraj Balachandran
TI  - On the Harmonic Index and the Signless Laplacian Spectral Radius of Graphs
JO  - Kragujevac Journal of Mathematics
PY  - 2021
SP  - 299 
VL  - 45
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2021_45_2_a11/
LA  - en
ID  - KJM_2021_45_2_a11
ER  - 
%0 Journal Article
%A Hanyuan Deng
%A Tomáš Vetrík
%A Selvaraj Balachandran
%T On the Harmonic Index and the Signless Laplacian Spectral Radius of Graphs
%J Kragujevac Journal of Mathematics
%D 2021
%P 299 
%V 45
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2021_45_2_a11/
%G en
%F KJM_2021_45_2_a11
Hanyuan Deng; Tomáš Vetrík; Selvaraj Balachandran. On the Harmonic Index and the Signless Laplacian Spectral Radius of Graphs. Kragujevac Journal of Mathematics, Tome 45 (2021) no. 2, p. 299 . http://geodesic.mathdoc.fr/item/KJM_2021_45_2_a11/