The Reciprocal Complementary Wiener Number of Graph Operations
Kragujevac Journal of Mathematics, Tome 45 (2021) no. 1, p. 139 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

The reciprocal complementary Wiener number of a connected graph $G$ is defined as $\sum_{\{x,y\}\subseteq V(G)}\frac{1}{D+1-d_{G}(x,y)}$, where $D$ is the diameter of $G$ and $d_G(x,y)$ is the distance between vertices $x$ and $y$. In this work, we study the reciprocal complementary Wiener number of various graph operations such as join, Cartesian product, composition, strong product, disjunction, symmetric difference, corona product, splice and link of graphs.
Classification : 05C12, 05C35
Keywords: reciprocal complementary Wiener number, distance, graph operations
@article{KJM_2021_45_1_a10,
     author = {R. Nasiri and A. Nakhaei and A. R. Shojaeifard},
     title = {The {Reciprocal} {Complementary} {Wiener} {Number} of {Graph} {Operations}},
     journal = {Kragujevac Journal of Mathematics},
     pages = {139 },
     publisher = {mathdoc},
     volume = {45},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2021_45_1_a10/}
}
TY  - JOUR
AU  - R. Nasiri
AU  - A. Nakhaei
AU  - A. R. Shojaeifard
TI  - The Reciprocal Complementary Wiener Number of Graph Operations
JO  - Kragujevac Journal of Mathematics
PY  - 2021
SP  - 139 
VL  - 45
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2021_45_1_a10/
LA  - en
ID  - KJM_2021_45_1_a10
ER  - 
%0 Journal Article
%A R. Nasiri
%A A. Nakhaei
%A A. R. Shojaeifard
%T The Reciprocal Complementary Wiener Number of Graph Operations
%J Kragujevac Journal of Mathematics
%D 2021
%P 139 
%V 45
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2021_45_1_a10/
%G en
%F KJM_2021_45_1_a10
R. Nasiri; A. Nakhaei; A. R. Shojaeifard. The Reciprocal Complementary Wiener Number of Graph Operations. Kragujevac Journal of Mathematics, Tome 45 (2021) no. 1, p. 139 . http://geodesic.mathdoc.fr/item/KJM_2021_45_1_a10/