Johnson Pseudo-Contractibility and Pseudo-Amenability of $ \theta $-Lau Product
Kragujevac Journal of Mathematics, Tome 44 (2020) no. 4, p. 593
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Given Banach algebras $A$ and $B$ and $\theta\in\Delta(B)$. We shall study the Johnson pseudo-contractibility and pseudo-amenability of the $\theta$-Lau product $A\times_{\theta}B$. We show that if $A\times_{\theta}B$ is Johnson pseudo-contractible, then both $A$ and $B$ are Johnson pseudo-contractible and $A$ has a bounded approximate identity. In some particular cases, a complete characterization of Johnson pseudo-contractibility of $A\times_{\theta}B$ is given. Also, we show that pseudo-amenability of $A\times_{\theta}B$ implies the approximate amenability of $A$ and pseudo-amenability of $B$.
Classification :
46H05, 46H20 43A20
Keywords: $\theta $-Lau product, Johnson pseudo-contractibility, pseudo-amenability
Keywords: $\theta $-Lau product, Johnson pseudo-contractibility, pseudo-amenability
@article{KJM_2020_44_4_a9,
author = {M. Askari-Sayah and A. Pourabbas and A. Sahami},
title = {Johnson {Pseudo-Contractibility} and {Pseudo-Amenability} of $ \theta ${-Lau} {Product}},
journal = {Kragujevac Journal of Mathematics},
pages = {593 },
year = {2020},
volume = {44},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2020_44_4_a9/}
}
TY - JOUR AU - M. Askari-Sayah AU - A. Pourabbas AU - A. Sahami TI - Johnson Pseudo-Contractibility and Pseudo-Amenability of $ \theta $-Lau Product JO - Kragujevac Journal of Mathematics PY - 2020 SP - 593 VL - 44 IS - 4 UR - http://geodesic.mathdoc.fr/item/KJM_2020_44_4_a9/ LA - en ID - KJM_2020_44_4_a9 ER -
M. Askari-Sayah; A. Pourabbas; A. Sahami. Johnson Pseudo-Contractibility and Pseudo-Amenability of $ \theta $-Lau Product. Kragujevac Journal of Mathematics, Tome 44 (2020) no. 4, p. 593 . http://geodesic.mathdoc.fr/item/KJM_2020_44_4_a9/