The $\bar\partial$-Cauchy Problem on Weakly $q$-Convex Domains in $\Bbb{C}P^n$
Kragujevac Journal of Mathematics, Tome 44 (2020) no. 4, p. 581

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $D$ be a weakly $q$-convex domain in the complex projective space $\Bbb{C}P^n$. In this paper, the (weighted) $\bar\partial$-Cauchy problem with support conditions in $D$ is studied. Specifically, the modified weight function method is used to study the $L^2$ existence theorem for the $\bar\partial$-Neumann problem on $D$. The solutions are used to study function theory on weakly $q$-convex domains via the $\bar\partial$-Cauchy problem.
Classification : 32F10 32W05
Keywords: $\bar\partial$, $\bar\partial$-Neumann operator, $q$-convex domains
@article{KJM_2020_44_4_a8,
     author = {Sayed Saber},
     title = {The $\bar\partial${-Cauchy} {Problem} on {Weakly} $q${-Convex} {Domains} in $\Bbb{C}P^n$},
     journal = {Kragujevac Journal of Mathematics},
     pages = {581 },
     publisher = {mathdoc},
     volume = {44},
     number = {4},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2020_44_4_a8/}
}
TY  - JOUR
AU  - Sayed Saber
TI  - The $\bar\partial$-Cauchy Problem on Weakly $q$-Convex Domains in $\Bbb{C}P^n$
JO  - Kragujevac Journal of Mathematics
PY  - 2020
SP  - 581 
VL  - 44
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2020_44_4_a8/
LA  - en
ID  - KJM_2020_44_4_a8
ER  - 
%0 Journal Article
%A Sayed Saber
%T The $\bar\partial$-Cauchy Problem on Weakly $q$-Convex Domains in $\Bbb{C}P^n$
%J Kragujevac Journal of Mathematics
%D 2020
%P 581 
%V 44
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2020_44_4_a8/
%G en
%F KJM_2020_44_4_a8
Sayed Saber. The $\bar\partial$-Cauchy Problem on Weakly $q$-Convex Domains in $\Bbb{C}P^n$. Kragujevac Journal of Mathematics, Tome 44 (2020) no. 4, p. 581 . http://geodesic.mathdoc.fr/item/KJM_2020_44_4_a8/