Lower Bounds for Inverse Sum Indeg Index of Graphs
Kragujevac Journal of Mathematics, Tome 44 (2020) no. 4, p. 551
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Let $G=(V,E)$, $V=\{1,2,\ldots,n\}$, be a simple connected graph with $n$ vertices and $m$ edges and let $d_1\geq d_2\geq\cdots\geq d_n>0$, be the sequence of its vertex degrees. With $i\sim j$ we denote the adjacency of the vertices $i$ and $j$ in $G$. The inverse sum indeg index is defined as $ISI=\sum \frac{d_i\,d_j}{d_i+d_j}$ with summation going over all pairs of adjacent vertices. We consider lower bounds for $ISI$. We first analyze some lower bounds reported in the literature. Then we determine some new lower bounds.
Classification :
05C12 05C50
Keywords: degree (of vertex), degree (of edge), inverse sum indeg index, Zagreb index
Keywords: degree (of vertex), degree (of edge), inverse sum indeg index, Zagreb index
@article{KJM_2020_44_4_a5,
author = {I. Gutman and M. Mateji\'c and E. Milovanovi\'c and I. Milovanovi\'c},
title = {Lower {Bounds} for {Inverse} {Sum} {Indeg} {Index} of {Graphs}},
journal = {Kragujevac Journal of Mathematics},
pages = {551 },
publisher = {mathdoc},
volume = {44},
number = {4},
year = {2020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2020_44_4_a5/}
}
TY - JOUR AU - I. Gutman AU - M. Matejić AU - E. Milovanović AU - I. Milovanović TI - Lower Bounds for Inverse Sum Indeg Index of Graphs JO - Kragujevac Journal of Mathematics PY - 2020 SP - 551 VL - 44 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/KJM_2020_44_4_a5/ LA - en ID - KJM_2020_44_4_a5 ER -
I. Gutman; M. Matejić; E. Milovanović; I. Milovanović. Lower Bounds for Inverse Sum Indeg Index of Graphs. Kragujevac Journal of Mathematics, Tome 44 (2020) no. 4, p. 551 . http://geodesic.mathdoc.fr/item/KJM_2020_44_4_a5/