Convergence of Double Cosine Series
Kragujevac Journal of Mathematics, Tome 44 (2020) no. 3, p. 443 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In this paper we consider double cosine series whose coefficients form a null sequence of bounded variation of order $(p, 0)$, $(0, p)$ and $(p, p)$ with the weight $(jk)^{p-1}$ for some $p> 1$. We study pointwise convergence, uniform convergence and convergence in $L^r$-norm of the series under consideration. In a certain sense our results extend the results of Young \cite{Young}, Kolmogorov \cite{Kolmogorov} and Móricz \cite{Moricz1,Moricz2}.
Classification : 42A20, 42A32
Keywords: Rectangular partial sums, $L^r-$convergence, $Ces\gravearo $ means, monotone sequences
@article{KJM_2020_44_3_a9,
     author = {Karanvir Singh and Kanak Modi},
     title = {Convergence of {Double} {Cosine} {Series}},
     journal = {Kragujevac Journal of Mathematics},
     pages = {443 },
     publisher = {mathdoc},
     volume = {44},
     number = {3},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2020_44_3_a9/}
}
TY  - JOUR
AU  - Karanvir Singh
AU  - Kanak Modi
TI  - Convergence of Double Cosine Series
JO  - Kragujevac Journal of Mathematics
PY  - 2020
SP  - 443 
VL  - 44
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2020_44_3_a9/
LA  - en
ID  - KJM_2020_44_3_a9
ER  - 
%0 Journal Article
%A Karanvir Singh
%A Kanak Modi
%T Convergence of Double Cosine Series
%J Kragujevac Journal of Mathematics
%D 2020
%P 443 
%V 44
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2020_44_3_a9/
%G en
%F KJM_2020_44_3_a9
Karanvir Singh; Kanak Modi. Convergence of Double Cosine Series. Kragujevac Journal of Mathematics, Tome 44 (2020) no. 3, p. 443 . http://geodesic.mathdoc.fr/item/KJM_2020_44_3_a9/