Convergence of Double Cosine Series
Kragujevac Journal of Mathematics, Tome 44 (2020) no. 3, p. 443
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In this paper we consider double cosine series whose coefficients form a null sequence of bounded variation of order $(p, 0)$, $(0, p)$ and $(p, p)$ with the weight $(jk)^{p-1}$ for some $p> 1$. We study pointwise convergence, uniform convergence and convergence in $L^r$-norm of the series under consideration. In a certain sense our results extend the results of Young \cite{Young}, Kolmogorov \cite{Kolmogorov} and Móricz \cite{Moricz1,Moricz2}.
Classification :
42A20, 42A32
Keywords: Rectangular partial sums, $L^r-$convergence, $Ces\gravearo $ means, monotone sequences
Keywords: Rectangular partial sums, $L^r-$convergence, $Ces\gravearo $ means, monotone sequences
@article{KJM_2020_44_3_a9,
author = {Karanvir Singh and Kanak Modi},
title = {Convergence of {Double} {Cosine} {Series}},
journal = {Kragujevac Journal of Mathematics},
pages = {443 },
year = {2020},
volume = {44},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2020_44_3_a9/}
}
Karanvir Singh; Kanak Modi. Convergence of Double Cosine Series. Kragujevac Journal of Mathematics, Tome 44 (2020) no. 3, p. 443 . http://geodesic.mathdoc.fr/item/KJM_2020_44_3_a9/