Paracontact Metric $(\tilde\kappa,\tilde\mu)$ $\tilde R$ -Harmonic Manifolds
Kragujevac Journal of Mathematics, Tome 44 (2020) no. 3, p. 423 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We give classifications of paracontact metric $(\tilde{\kappa},\tilde{\mu})$ manifolds $M^{2n+1}$ with harmonic curvature for $n>1$ and $n=1$.
Classification : 53B30, 53C25 53D10
Keywords: Paracontact metric manifolds, $R$-harmonic manifold, $(\kappa;\mu )$-nullity distribution
@article{KJM_2020_44_3_a7,
     author = {I. K\"upeli Erken},
     title = {Paracontact {Metric} $(\tilde\kappa,\tilde\mu)$ $\tilde R$ {-Harmonic} {Manifolds}},
     journal = {Kragujevac Journal of Mathematics},
     pages = {423 },
     publisher = {mathdoc},
     volume = {44},
     number = {3},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2020_44_3_a7/}
}
TY  - JOUR
AU  - I. Küpeli Erken
TI  - Paracontact Metric $(\tilde\kappa,\tilde\mu)$ $\tilde R$ -Harmonic Manifolds
JO  - Kragujevac Journal of Mathematics
PY  - 2020
SP  - 423 
VL  - 44
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2020_44_3_a7/
LA  - en
ID  - KJM_2020_44_3_a7
ER  - 
%0 Journal Article
%A I. Küpeli Erken
%T Paracontact Metric $(\tilde\kappa,\tilde\mu)$ $\tilde R$ -Harmonic Manifolds
%J Kragujevac Journal of Mathematics
%D 2020
%P 423 
%V 44
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2020_44_3_a7/
%G en
%F KJM_2020_44_3_a7
I. Küpeli Erken. Paracontact Metric $(\tilde\kappa,\tilde\mu)$ $\tilde R$ -Harmonic Manifolds. Kragujevac Journal of Mathematics, Tome 44 (2020) no. 3, p. 423 . http://geodesic.mathdoc.fr/item/KJM_2020_44_3_a7/