Paracontact Metric $(\tilde\kappa,\tilde\mu)$ $\tilde R$ -Harmonic Manifolds
Kragujevac Journal of Mathematics, Tome 44 (2020) no. 3, p. 423

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We give classifications of paracontact metric $(\tilde{\kappa},\tilde{\mu})$ manifolds $M^{2n+1}$ with harmonic curvature for $n>1$ and $n=1$.
Classification : 53B30, 53C25 53D10
Keywords: Paracontact metric manifolds, $R$-harmonic manifold, $(\kappa;\mu )$-nullity distribution
@article{KJM_2020_44_3_a7,
     author = {I. K\"upeli Erken},
     title = {Paracontact {Metric} $(\tilde\kappa,\tilde\mu)$ $\tilde R$ {-Harmonic} {Manifolds}},
     journal = {Kragujevac Journal of Mathematics},
     pages = {423 },
     publisher = {mathdoc},
     volume = {44},
     number = {3},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2020_44_3_a7/}
}
TY  - JOUR
AU  - I. Küpeli Erken
TI  - Paracontact Metric $(\tilde\kappa,\tilde\mu)$ $\tilde R$ -Harmonic Manifolds
JO  - Kragujevac Journal of Mathematics
PY  - 2020
SP  - 423 
VL  - 44
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2020_44_3_a7/
LA  - en
ID  - KJM_2020_44_3_a7
ER  - 
%0 Journal Article
%A I. Küpeli Erken
%T Paracontact Metric $(\tilde\kappa,\tilde\mu)$ $\tilde R$ -Harmonic Manifolds
%J Kragujevac Journal of Mathematics
%D 2020
%P 423 
%V 44
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2020_44_3_a7/
%G en
%F KJM_2020_44_3_a7
I. Küpeli Erken. Paracontact Metric $(\tilde\kappa,\tilde\mu)$ $\tilde R$ -Harmonic Manifolds. Kragujevac Journal of Mathematics, Tome 44 (2020) no. 3, p. 423 . http://geodesic.mathdoc.fr/item/KJM_2020_44_3_a7/