Some Commutativity Theorems for Near-Rings with Left Multipliers
Kragujevac Journal of Mathematics, Tome 44 (2020) no. 2, p. 205
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Let $\mathcal{N}$ be a $3$-prime near-ring with the center $Z(\mathcal{N})$, and $U$ be a nonzero semigroup ideal of $\mathcal{N}$. In the present paper it is shown that a $3$-prime near-ring $\mathcal{N}$ is a commutative ring if and only if it admits left multipliers $\mathcal{F}$ and $G$ satisfying any one of the following properties: ${\rm(i)}\:\mathcal{F}(x)G(y)±[x, y]\in Z(\mathcal{N})$; ${\rm(ii)}\:\mathcal{F}(x)G(y)±x\circ y\in Z(\mathcal{N})$; ${\rm(iii)}\:\mathcal{F}(x)G(y)±yx\in Z(\mathcal{N})$; ${\rm(iv)}\:\mathcal{F}(x)G(y)±xy\in Z(\mathcal{N})$ and ${\rm(v)}\:\mathcal{F}([x, y])±G(x\circ y)\in Z(\mathcal{N})$ for all $x, y\in U$.
Classification :
16Y30, 16N60, 16W25
Keywords: $3$-Prime near-ring, derivations, commutativity, generalized derivation, left multiplier
Keywords: $3$-Prime near-ring, derivations, commutativity, generalized derivation, left multiplier
@article{KJM_2020_44_2_a3,
author = {A. Boua and A. Y. Abdelwanis and A. Chillali},
title = {Some {Commutativity} {Theorems} for {Near-Rings} with {Left} {Multipliers}},
journal = {Kragujevac Journal of Mathematics},
pages = {205 },
publisher = {mathdoc},
volume = {44},
number = {2},
year = {2020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2020_44_2_a3/}
}
TY - JOUR AU - A. Boua AU - A. Y. Abdelwanis AU - A. Chillali TI - Some Commutativity Theorems for Near-Rings with Left Multipliers JO - Kragujevac Journal of Mathematics PY - 2020 SP - 205 VL - 44 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/KJM_2020_44_2_a3/ LA - en ID - KJM_2020_44_2_a3 ER -
A. Boua; A. Y. Abdelwanis; A. Chillali. Some Commutativity Theorems for Near-Rings with Left Multipliers. Kragujevac Journal of Mathematics, Tome 44 (2020) no. 2, p. 205 . http://geodesic.mathdoc.fr/item/KJM_2020_44_2_a3/