On the Local Version of the Chern Conjecture: CMC Hypersurfaces with Constant Scalar Curvature in $\mathbb S^n+1$
Kragujevac Journal of Mathematics, Tome 44 (2020) no. 1, p. 101
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
After nearly 50 years of research the Chern conjecture for isoparametric hypersurfaces in spheres is still an unsolved and important problem and in particular its local version is of great interest, since here one loses the power of Stokes' Theorem as a method for proving it. Here we present a related result for CMC hypersurfaces in $\mathbb{S}^{n+1}$ with constant scalar curvature and three distinct principal curvatures.
Classification :
53C42 53C21
Keywords: constant mean and scalar curvature, isoparametric hypersurfaces, Chern conjecture
Keywords: constant mean and scalar curvature, isoparametric hypersurfaces, Chern conjecture
@article{KJM_2020_44_1_a6,
author = {S. C. de Almeida and F. G. B. Brito and M. Scherfner and S. Weiss},
title = {On the {Local} {Version} of the {Chern} {Conjecture:} {CMC} {Hypersurfaces} with {Constant} {Scalar} {Curvature} in $\mathbb S^n+1$},
journal = {Kragujevac Journal of Mathematics},
pages = {101 },
year = {2020},
volume = {44},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2020_44_1_a6/}
}
TY - JOUR AU - S. C. de Almeida AU - F. G. B. Brito AU - M. Scherfner AU - S. Weiss TI - On the Local Version of the Chern Conjecture: CMC Hypersurfaces with Constant Scalar Curvature in $\mathbb S^n+1$ JO - Kragujevac Journal of Mathematics PY - 2020 SP - 101 VL - 44 IS - 1 UR - http://geodesic.mathdoc.fr/item/KJM_2020_44_1_a6/ LA - en ID - KJM_2020_44_1_a6 ER -
%0 Journal Article %A S. C. de Almeida %A F. G. B. Brito %A M. Scherfner %A S. Weiss %T On the Local Version of the Chern Conjecture: CMC Hypersurfaces with Constant Scalar Curvature in $\mathbb S^n+1$ %J Kragujevac Journal of Mathematics %D 2020 %P 101 %V 44 %N 1 %U http://geodesic.mathdoc.fr/item/KJM_2020_44_1_a6/ %G en %F KJM_2020_44_1_a6
S. C. de Almeida; F. G. B. Brito; M. Scherfner; S. Weiss. On the Local Version of the Chern Conjecture: CMC Hypersurfaces with Constant Scalar Curvature in $\mathbb S^n+1$. Kragujevac Journal of Mathematics, Tome 44 (2020) no. 1, p. 101 . http://geodesic.mathdoc.fr/item/KJM_2020_44_1_a6/