Proximate Groups of Higher Order
Kragujevac Journal of Mathematics, Tome 43 (2019) no. 4, p. 587 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Using the intrinsic definition of shape based on proximate sequences for compact and all topological spaces based on proximate nets indexed by open coverings in the paper Shekutkovski \cite{ex3} we define proximate fundamental group. In this paper will be introduced proximate groups of higher order and it will be shown that these groups are invariants of pointed intrinsic shape.
Classification : 55P55 54C56
Keywords: Pointed homotopy over a covering, pointed proximate net, $n$-dimensional proximate loop, proximate group of higher order, induced function
@article{KJM_2019_43_4_a6,
     author = {Aneta Velkoska and Nikita Shekutkovski and Zoran Misajleski},
     title = {Proximate {Groups} of {Higher} {Order}},
     journal = {Kragujevac Journal of Mathematics},
     pages = {587 },
     publisher = {mathdoc},
     volume = {43},
     number = {4},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2019_43_4_a6/}
}
TY  - JOUR
AU  - Aneta Velkoska
AU  - Nikita Shekutkovski
AU  - Zoran Misajleski
TI  - Proximate Groups of Higher Order
JO  - Kragujevac Journal of Mathematics
PY  - 2019
SP  - 587 
VL  - 43
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2019_43_4_a6/
LA  - en
ID  - KJM_2019_43_4_a6
ER  - 
%0 Journal Article
%A Aneta Velkoska
%A Nikita Shekutkovski
%A Zoran Misajleski
%T Proximate Groups of Higher Order
%J Kragujevac Journal of Mathematics
%D 2019
%P 587 
%V 43
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2019_43_4_a6/
%G en
%F KJM_2019_43_4_a6
Aneta Velkoska; Nikita Shekutkovski; Zoran Misajleski. Proximate Groups of Higher Order. Kragujevac Journal of Mathematics, Tome 43 (2019) no. 4, p. 587 . http://geodesic.mathdoc.fr/item/KJM_2019_43_4_a6/