Chain Connected Sets in a Topological Space
Kragujevac Journal of Mathematics, Tome 43 (2019) no. 4, p. 575

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Shekutkovski's paper \cite{ex2} compares two definitions of connectedness: the standard one and a definition using coverings. The second definition seems to be an effective description of quasicomponents. In our paper rather than as a space, we generalize the notion of connectedness as a set in a topological space called chain connected set. We also introduce a notion of two chain separated sets in a space and using this notion of chain, we study the properties of chain connected and chain separated sets in a topological space. Moreover, we prove the properties of connected spaces using chain connectedness. Chain connectedness of two points in a topological space is an equivalence relation. Chain connected components of a set in a topological space are a union of quasicomponents of the set, and if the set agrees with the space, chain connected components match with quasicomponents.
Classification : 54D05
Keywords: General topology, coverings, connectedness, chain connectedness, functionally separatedness, quasicomponents
@article{KJM_2019_43_4_a5,
     author = {Z. Misajleski and N. Shekutkovski and A. Velkoska},
     title = {Chain {Connected} {Sets} in a {Topological} {Space}},
     journal = {Kragujevac Journal of Mathematics},
     pages = {575 },
     publisher = {mathdoc},
     volume = {43},
     number = {4},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2019_43_4_a5/}
}
TY  - JOUR
AU  - Z. Misajleski
AU  - N. Shekutkovski
AU  - A. Velkoska
TI  - Chain Connected Sets in a Topological Space
JO  - Kragujevac Journal of Mathematics
PY  - 2019
SP  - 575 
VL  - 43
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2019_43_4_a5/
LA  - en
ID  - KJM_2019_43_4_a5
ER  - 
%0 Journal Article
%A Z. Misajleski
%A N. Shekutkovski
%A A. Velkoska
%T Chain Connected Sets in a Topological Space
%J Kragujevac Journal of Mathematics
%D 2019
%P 575 
%V 43
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2019_43_4_a5/
%G en
%F KJM_2019_43_4_a5
Z. Misajleski; N. Shekutkovski; A. Velkoska. Chain Connected Sets in a Topological Space. Kragujevac Journal of Mathematics, Tome 43 (2019) no. 4, p. 575 . http://geodesic.mathdoc.fr/item/KJM_2019_43_4_a5/