Chain Connected Sets in a Topological Space
Kragujevac Journal of Mathematics, Tome 43 (2019) no. 4, p. 575 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Shekutkovski's paper \cite{ex2} compares two definitions of connectedness: the standard one and a definition using coverings. The second definition seems to be an effective description of quasicomponents. In our paper rather than as a space, we generalize the notion of connectedness as a set in a topological space called chain connected set. We also introduce a notion of two chain separated sets in a space and using this notion of chain, we study the properties of chain connected and chain separated sets in a topological space. Moreover, we prove the properties of connected spaces using chain connectedness. Chain connectedness of two points in a topological space is an equivalence relation. Chain connected components of a set in a topological space are a union of quasicomponents of the set, and if the set agrees with the space, chain connected components match with quasicomponents.
Classification : 54D05
Keywords: General topology, coverings, connectedness, chain connectedness, functionally separatedness, quasicomponents
@article{KJM_2019_43_4_a5,
     author = {Z. Misajleski and N. Shekutkovski and A. Velkoska},
     title = {Chain {Connected} {Sets} in a {Topological} {Space}},
     journal = {Kragujevac Journal of Mathematics},
     pages = {575 },
     publisher = {mathdoc},
     volume = {43},
     number = {4},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2019_43_4_a5/}
}
TY  - JOUR
AU  - Z. Misajleski
AU  - N. Shekutkovski
AU  - A. Velkoska
TI  - Chain Connected Sets in a Topological Space
JO  - Kragujevac Journal of Mathematics
PY  - 2019
SP  - 575 
VL  - 43
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2019_43_4_a5/
LA  - en
ID  - KJM_2019_43_4_a5
ER  - 
%0 Journal Article
%A Z. Misajleski
%A N. Shekutkovski
%A A. Velkoska
%T Chain Connected Sets in a Topological Space
%J Kragujevac Journal of Mathematics
%D 2019
%P 575 
%V 43
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2019_43_4_a5/
%G en
%F KJM_2019_43_4_a5
Z. Misajleski; N. Shekutkovski; A. Velkoska. Chain Connected Sets in a Topological Space. Kragujevac Journal of Mathematics, Tome 43 (2019) no. 4, p. 575 . http://geodesic.mathdoc.fr/item/KJM_2019_43_4_a5/